Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Self-Assembly of Short Elastin-like Amphiphilic Peptides: Effects of Temperature, Molecular Hydrophobicity and Charge Distribution

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel type of self-assembling peptides has been developed by introducing the basic elastomeric β-turn units of elastin protein into the amphiphilic peptide molecules. The self-assembly behaviors of such peptides are affected by the overall molecular hydrophobicity, charge distribution and temperature. The molecules with higher hydrophobicity exhibit better self-assembling capability to form long fibrillar nanostructures. For some peptides, the temperature increase can not only promote the self-assembly process but also change the self-assembly routes. The self-assembly of the peptides with two charges centralized on one terminal show higher dependence on temperature than the peptides with two charges distributed separately on the two terminals. The study probes into the self-assembly behaviors of short elastin-like peptides and is of great help for developing novel self-assembling peptides with thermo sensitivity.

          Related collections

          Most cited references 51

          • Record: found
          • Abstract: found
          • Article: not found

          Fabrication of novel biomaterials through molecular self-assembly.

          Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spectroscopic methods for analysis of protein secondary structure.

             L McLean,  J Pelton (2000)
            Several methods for determination of the secondary structure of proteins by spectroscopic measurements are reviewed. Circular dichroism (CD) spectroscopy provides rapid determinations of protein secondary structure with dilute solutions and a way to rapidly assess conformational changes resulting from addition of ligands. Both CD and Raman spectroscopies are particularly useful for measurements over a range of temperatures. Infrared (IR) and Raman spectroscopy require only small volumes of protein solution. The frequencies of amide bands are analyzed to determine the distribution of secondary structures in proteins. NMR chemical shifts may also be used to determine the positions of secondary structure within the primary sequence of a protein. However, the chemical shifts must first be assigned to particular residues, making the technique considerably slower than the optical methods. These data, together with sophisticated molecular modeling techniques, allow for refinement of protein structural models as well as rapid assessment of conformational changes resulting from ligand binding or macromolecular interactions. A selected number of examples are given to illustrate the power of the techniques in applications of biological interest. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular self-assembly and applications of designer peptide amphiphiles.

              Short synthetic peptide amphiphiles have recently been explored as effective nanobiomaterials in applications ranging from controlled gene and drug release, skin care, nanofabrication, biomineralization, membrane protein stabilization to 3D cell culture and tissue engineering. This range of applications is heavily linked to their unique nanostructures, remarkable simplicity and biocompatibility. Some peptide amphiphiles also possess antimicrobial activities whilst remaining benign to mammalian cells. These attractive features are inherently related to their selective affinity to different membrane interfaces, high capacity for interfacial adsorption, nanostructuring and spontaneous formation of nano-assemblies. Apart from sizes, the primary sequences of short peptides are very diverse as they can be either biomimetic or de novo designed. Thus, their self-assembling mechanistic processes and the nanostructures also vary enormously. This critical review highlights recent advances in studying peptide amphiphiles, focusing on the formation of different nanostructures and their applications in diverse fields. Many interesting features learned from peptide self-organisation and hierarchical templating will serve as useful guidance for functional materials design and nanobiotechnology (123 references).
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                08 January 2019
                January 2019
                : 24
                : 1
                Affiliations
                [1 ]State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266580, China; shenyang52633@ 123456163.com (Y.S.); m18254289278@ 123456163.com (Y.W.)
                [2 ]Personnel Department and School of Blue Economy Engineering, Qingdao Vocational and Technical College, Qingdao Economic and Technological Development Zone, Qingdao 266555, China; wangxl@ 123456qtc.edu.cn
                [3 ]Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; lidx@ 123456qust.edu.cn
                Author notes
                [* ]Correspondence: mwcao@ 123456upc.edu.cn ; Tel./Fax: +86-532-86983455
                Article
                molecules-24-00202
                10.3390/molecules24010202
                6337584
                30625991
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article