0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of optimum diagnosis and treatment of insomnia in patients with hypertension and diabetes: A review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sleep plays a pivotal role in regulation and function of the central nervous system (CNS) and other physiological functions of the body such as regulation of body temperature, metabolism, catabolism, learning, and memory consolidation. Therefore, sleep is not a mere passive state, but it is a highly organized interaction of neural networks and neurotransmitters of the CNS which maintain active neurobehavioral state. However, in insomnia normal physiological function is disturbed which results in several comorbidities such as depression, cardiovascular disorders, hypertension, diabetes mellitus, breathing difficulties, chronic pain, and gastrointestinal problems which affect the quality of life. Diagnosis of insomnia requires a comprehensive assessment of patient's medical history, physical examination, and sleeping pattern using various screen tools. There are several options available for the treatment of insomnia such as non-pharmacological and pharmacological that increase our understanding of the involvement of neurophysiological, neurobehavioral, neurochemical, neurocognitive, and neuroendocrine factors associated with insomnia. The pharmacological agents that are currently in use for the treatment of insomnia include benzodiazepines (BZDs), non-BZD hypnotics, and ramelteon as well as antidepressants such as doxepin. However, due to adverse events and addiction potential, use of BZDs is obsolete. Among non-BZD, zolpidem is the highly prescribed drug for the treatment of insomnia, globally. This review article focuses on prevalence, pathophysiology, diagnosis, and treatment of insomnia in patients with hypertension and diabetes. In addition, it also discusses the role of zolpidem in comparison to BZDs in the management of insomnia.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantity and Quality of Sleep and Incidence of Type 2 Diabetes

          OBJECTIVE To assess the relationship between habitual sleep disturbances and the incidence of type 2 diabetes and to obtain an estimate of the risk. RESEARCH DESIGN AND METHODS We conducted a systematic search of publications using MEDLINE (1955–April 2009), EMBASE, and the Cochrane Library and manual searches without language restrictions. We included studies if they were prospective with follow-up >3 years and had an assessment of sleep disturbances at baseline and incidence of type 2 diabetes. We recorded several characteristics for each study. We extracted quantity and quality of sleep, how they were assessed, and incident cases defined with different validated methods. We extracted relative risks (RRs) and 95% CI and pooled them using random-effects models. We performed sensitivity analysis and assessed heterogeneity and publication bias. RESULTS We included 10 studies (13 independent cohort samples; 107,756 male and female participants, follow-up range 4.2–32 years, and 3,586 incident cases of type 2 diabetes). In pooled analyses, quantity and quality of sleep predicted the risk of development of type 2 diabetes. For short duration of sleep (≤5–6 h/night), the RR was 1.28 (95% CI 1.03–1.60, P = 0.024, heterogeneity P = 0.015); for long duration of sleep (>8–9 h/night), the RR was 1.48 (1.13–1.96, P = 0.005); for difficulty in initiating sleep, the RR was 1.57 (1.25–1.97, P < 0.0001); and for difficulty in maintaining sleep, the RR was 1.84 (1.39–2.43, P < 0.0001). CONCLUSIONS Quantity and quality of sleep consistently and significantly predict the risk of the development of type 2 diabetes. The mechanisms underlying this relation may differ between short and long sleepers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of sleep time with diabetes mellitus and impaired glucose tolerance.

            Experimental sleep restriction causes impaired glucose tolerance (IGT); however, little is known about the metabolic effects of habitual sleep restriction. We assessed the cross-sectional relation of usual sleep time to diabetes mellitus (DM) and IGT among participants in the Sleep Heart Health Study, a community-based prospective study of the cardiovascular consequences of sleep-disordered breathing. Participants were 722 men and 764 women, aged 53 to 93 years. Usual sleep time was obtained by standardized questionnaire. Diabetes mellitus was defined as a serum glucose level of 126 mg/dL or more (> or =7.0 mmol/L) fasting or 200 mg/dL or more (> or =11.1 mmol/L) 2 hours following standard oral glucose challenge or medication use for DM. Impaired glucose tolerance was defined as a 2-hour postchallenge glucose level of 140 mg/dL or more (> or =7.8 mmol/L) and less than 200 mg/dL. The relation of sleep time to DM and IGT was examined using categorical logistic regression with adjustment for age, sex, race, body habitus, and apnea-hypopnea index. The median sleep time was 7 hours per night, with 27.1% of subjects sleeping 6 hours or less per night. Compared with those sleeping 7 to 8 hours per night, subjects sleeping 5 hours or less and 6 hours per night had adjusted odds ratios for DM of 2.51 (95% confidence interval, 1.57-4.02) and 1.66 (95% confidence interval, 1.15-2.39), respectively. Adjusted odds ratios for IGT were 1.33 (95% confidence interval, 0.83-2.15) and 1.58 (95% confidence interval, 1.15-2.18), respectively. Subjects sleeping 9 hours or more per night also had increased odds ratios for DM and IGT. These associations persisted when subjects with insomnia symptoms were excluded. A sleep duration of 6 hours or less or 9 hours or more is associated with increased prevalence of DM and IGT. Because this effect was present in subjects without insomnia, voluntary sleep restriction may contribute to the large public health burden of DM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation.

              That insufficient sleep is associated with poor attention and performance deficits is becoming widely recognized. Fewer people are aware that chronic sleep complaints in epidemiologic studies have also been associated with an increase in overall mortality and morbidity. This article summarizes findings of known effects of insufficient sleep on cardiovascular risk factors including blood pressure, glucose metabolism, hormonal regulation, and inflammation with particular emphasis on experimental sleep loss, using models of total and partial sleep deprivation, in healthy individuals who normally sleep in the range of 7 to 8 hours and have no sleep disorders. These studies show that insufficient sleep alters established cardiovascular risk factors in a direction that is known to increase the risk of cardiac morbidity.
                Bookmark

                Author and article information

                Journal
                J Family Med Prim Care
                J Family Med Prim Care
                JFMPC
                Journal of Family Medicine and Primary Care
                Medknow Publications & Media Pvt Ltd (India )
                2249-4863
                2278-7135
                Sep-Oct 2018
                : 7
                : 5
                : 876-883
                Affiliations
                [1 ] Respiratory Critical Care and Sleep Medicine, Artemis Hospital, Gurugram, Haryana, India
                Author notes
                Address for correspondence: Dr. Himanshu Garg, Artemis Hospital, Sector 51, Gurugram - 122 001, Haryana, India. E-mail: drhimgarg@ 123456yahoo.com
                Article
                JFMPC-7-876
                10.4103/jfmpc.jfmpc_337_17
                6259555
                30598926
                5c1d8b8b-0763-4eb2-9878-0880fc978d80
                Copyright: © 2018 Journal of Family Medicine and Primary Care

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                Categories
                Original Article

                diabetes mellitus,hypertension,insomnia,zolpidem
                diabetes mellitus, hypertension, insomnia, zolpidem

                Comments

                Comment on this article