Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Related collections

      Most cited references 46

      • Record: found
      • Abstract: found
      • Article: not found

      A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars.

      The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

        The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover.

          Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.
            Bookmark

            Author and article information

            Journal
            Science
            Science
            American Association for the Advancement of Science (AAAS)
            0036-8075
            1095-9203
            June 07 2018
            June 08 2018
            June 07 2018
            June 08 2018
            : 360
            : 6393
            : 1096-1101
            10.1126/science.aas9185
            © 2018

            http://www.sciencemag.org/about/science-licenses-journal-article-reuse

            Comments

            Comment on this article