21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Functional Activation of Limbic Brain Regions during Negative Emotional Processing in Migraine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pain is both an unpleasant sensory and emotional experience. This is highly relevant in migraine where cortical hyperexcitability in response to sensory stimuli (including pain, light, and sound) has been extensively reported. However, migraine may feature a more general enhanced response to aversive stimuli rather than being sensory-specific. To this end we used functional magnetic resonance imaging to assess neural activation in migraineurs interictaly in response to emotional visual stimuli from the International Affective Picture System. Migraineurs, compared to healthy controls, demonstrated increased neural activity in response to negative emotional stimuli. Most notably in regions overlapping in their involvement in both nociceptive and emotional processing including the posterior cingulate, caudate, amygdala, and thalamus (cluster corrected, p < 0.01). In contrast, migraineurs and healthy controls displayed no and minimal differences in response to positive and neutral emotional stimuli, respectively. These findings support the notion that migraine may feature more generalized altered cerebral processing of aversive/negative stimuli, rather than exclusively to sensory stimuli. A generalized hypersensitivity to aversive stimuli may be an inherent feature of migraine, or a consequential alteration developed over the duration of the disease. This proposed cortical-limbic hypersensitivity may form an important part of the migraine pathophysiology, including psychological comorbidity, and may represent an innate sensitivity to aversive stimuli that underpins attack triggers, attack persistence and (potentially) gradual headache chronification.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Measuring emotion: the Self-Assessment Manikin and the Semantic Differential.

          The Self-Assessment Manikin (SAM) is a non-verbal pictorial assessment technique that directly measures the pleasure, arousal, and dominance associated with a person's affective reaction to a wide variety of stimuli. In this experiment, we compare reports of affective experience obtained using SAM, which requires only three simple judgments, to the Semantic Differential scale devised by Mehrabian and Russell (An approach to environmental psychology, 1974) which requires 18 different ratings. Subjective reports were measured to a series of pictures that varied in both affective valence and intensity. Correlations across the two rating methods were high both for reports of experienced pleasure and felt arousal. Differences obtained in the dominance dimension of the two instruments suggest that SAM may better track the personal response to an affective stimulus. SAM is an inexpensive, easy method for quickly assessing reports of affective response in many contexts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pain and emotion interactions in subregions of the cingulate gyrus.

            Brent Vogt (2005)
            Acute pain and emotion are processed in two forebrain networks, and the cingulate cortex is involved in both. Although Brodmann's cingulate gyrus had two divisions and was not based on any functional criteria, functional imaging studies still use this model. However, recent cytoarchitectural studies of the cingulate gyrus support a four-region model, with subregions, that is based on connections and qualitatively unique functions. Although the activity evoked by pain and emotion has been widely reported, some view them as emergent products of the brain rather than of small aggregates of neurons. Here, we assess pain and emotion in each cingulate subregion, and assess whether pain is co-localized with negative affect. Amazingly, these activation patterns do not simply overlap.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional imaging of brain responses to pain. A review and meta-analysis (2000).

              Brain responses to pain, assessed through positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are reviewed. Functional activation of brain regions are thought to be reflected by increases in the regional cerebral blood flow (rCBF) in PET studies, and in the blood oxygen level dependent (BOLD) signal in fMRI. rCBF increases to noxious stimuli are almost constantly observed in second somatic (SII) and insular regions, and in the anterior cingulate cortex (ACC), and with slightly less consistency in the contralateral thalamus and the primary somatic area (SI). Activation of the lateral thalamus, SI, SII and insula are thought to be related to the sensory-discriminative aspects of pain processing. SI is activated in roughly half of the studies, and the probability of obtaining SI activation appears related to the total amount of body surface stimulated (spatial summation) and probably also by temporal summation and attention to the stimulus. In a number of studies, the thalamic response was bilateral, probably reflecting generalised arousal in reaction to pain. ACC does not seem to be involved in coding stimulus intensity or location but appears to participate in both the affective and attentional concomitants of pain sensation, as well as in response selection. ACC subdivisions activated by painful stimuli partially overlap those activated in orienting and target detection tasks, but are distinct from those activated in tests involving sustained attention (Stroop, etc.). In addition to ACC, increased blood flow in the posterior parietal and prefrontal cortices is thought to reflect attentional and memory networks activated by noxious stimulation. Less noted but frequent activation concerns motor-related areas such as the striatum, cerebellum and supplementary motor area, as well as regions involved in pain control such as the periaqueductal grey. In patients, chronic spontaneous pain is associated with decreased resting rCBF in contralateral thalamus, which may be reverted by analgesic procedures. Abnormal pain evoked by innocuous stimuli (allodynia) has been associated with amplification of the thalamic, insular and SII responses, concomitant to a paradoxical CBF decrease in ACC. It is argued that imaging studies of allodynia should be encouraged in order to understand central reorganisations leading to abnormal cortical pain processing. A number of brain areas activated by acute pain, particularly the thalamus and anterior cingulate, also show increases in rCBF during analgesic procedures. Taken together, these data suggest that hemodynamic responses to pain reflect simultaneously the sensory, cognitive and affective dimensions of pain, and that the same structure may both respond to pain and participate in pain control. The precise biochemical nature of these mechanisms remains to be investigated.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                26 July 2016
                2016
                : 10
                : 366
                Affiliations
                [1] 1Center for Pain and the Brain (PAIN Research Group), Boston Children’s Hospital, Harvard Medical School, Boston MA, USA
                [2] 2Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston MA, USA
                [3] 3Department of Psychiatry, PAIN Research Group, Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont MA, USA
                [4] 4Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston MA, USA
                [5] 5Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, USA
                Author notes

                Edited by: Peter Sörös, University of Western Ontario, Germany

                Reviewed by: Vaughan G. Macefield, Western Sydney University, Australia; Jon David Levine, University of California, San Francisco, USA

                *Correspondence: Sophie L. Wilcox, sophie.wilcox@ 123456childrens.harvard.edu
                Article
                10.3389/fnhum.2016.00366
                4960233
                27507939
                5c341348-42a9-49c6-9616-d5869e8adf84
                Copyright © 2016 Wilcox, Veggeberg, Lemme, Hodkinson, Scrivani, Burstein, Becerra and Borsook.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 April 2016
                : 08 July 2016
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 77, Pages: 10, Words: 0
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: R01 NS073977
                Award ID: K24 NS064050
                Categories
                Neuroscience
                Original Research

                Neurosciences
                migraine,headache,fmri,emotion,iaps,limbic
                Neurosciences
                migraine, headache, fmri, emotion, iaps, limbic

                Comments

                Comment on this article