51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Congenital insensitivity to pain with anhidrosis (CIPA; MIM 256800) is an autosomal-recessive disorder characterized by recurrent episodes of unexplained fever, anhidrosis (absence of sweating) and absence of reaction to noxious stimuli, self-mutilating behaviour and mental retardation. The genetic basis for CIPA is unknown. Nerve growth factor (NGF) induces neurite outgrowth and promotes survival of embryonic sensory and sympathetic neurons. Mice lacking the gene for TrkA, a receptor tyrosine kinase for NGF, share dramatic phenotypic features of CIPA, including loss of responses to painful stimuli, although anhidrosis is not apparent in these animals. We therefore considered the human TRKA homologue as a candidate for the CIPA gene. The mRNA and genomic DNA encoding TRKA were analysed in three unrelated CIPA patients who had consanguineous parents. We detected a deletion-, splice- and missense-mutation in the tyrosine kinase domain in these three patients. Our findings strongly suggest that defects in TRKA cause CIPA and that the NGF-TRKA system has a crucial role in the development and function of the nociceptive reception as well as establishment of thermoregulation via sweating in humans. These results also implicate genes encoding other TRK and neurotrophin family members as candidates for developmental defect(s) of the nervous system.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The trk proto-oncogene encodes a receptor for nerve growth factor.

            Two classes of receptors with distinct affinities for nerve growth factor (NGF) have been identified. The low affinity receptor (Kd approximately 10(-9) to 10(-8) M) is a cysteine-rich glycoprotein encoded by the previously characterized LNGFR gene. The structural nature of the high affinity receptor (Kd approximately 10(-11) to 10(-10) M) has yet to be established. In this study we show that the product of the human trk proto-oncogene (gp140trk) binds NGF with high affinity. Moreover, NGF could be chemically cross-linked to the endogenous gp140trk present in rat PC12 pheochromocytoma cells as well as to gp140trk ectopically expressed in mouse fibroblasts and in insect Sf9 cells. High affinity binding of NGF to gp140trk can occur in the absence of low affinity LNGFR receptors, at least in nonneural cells. Addition of NGF to PC12 cells elicits rapid phosphorylation of gp140trk on tyrosine residues and stimulates its tyrosine kinase activity. These results indicate that gp140trk is a functional NGF receptor that mediates at least some of the signal transduction processes initiated by this neurotrophic factor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system.

              We have generated mice carrying a mutation of the gene encoding the low affinity NGF receptor p75NGFR by targeted mutation in embryonic stem cells. Mice homozygous for the mutation were viable and fertile. Immunohistochemical analyses of the footpad skin of mutant mice revealed markedly decreased sensory innervation by calcitonin gene-related peptide- and substance P-immunoreactive fibers. The defective innervation was correlated with loss of heat sensitivity and associated with the development of ulcers in the distal extremities. Complicated by secondary bacterial infection, the ulcers progressed to toenail and hair loss. Crossing a human transgene encoding p75NGFR into the mutant animals rescued the absent heat sensitivity and the occurrence of skin ulcers and increased the density of neuropeptide-immunoreactive sensory innervation of footpad skin. The mutation in the gene encoding p75NGFR did not decrease the size of sympathetic ganglia or the density of sympathetic innervation of the iris or salivary gland. Our results suggest that p75NGFR has an important role in the development and function of sensory neurons.
                Bookmark

                Author and article information

                Journal
                Nat Genet
                Nature genetics
                Springer Science and Business Media LLC
                1061-4036
                1061-4036
                Aug 1996
                : 13
                : 4
                Affiliations
                [1 ] Department of Pediatrics, Kumamoto University School of Medicine, Japan.
                Article
                10.1038/ng0896-485
                8696348
                5c353b03-6ce0-40d4-b2eb-94ac215f6812
                History

                Comments

                Comment on this article