8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Arabidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants.

      1 , , ,
      Plant physiology
      American Society of Plant Biologists (ASPB)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The immutans (im) variegation mutant of Arabidopsis has green and white leaf sectors due to the action of a nuclear recessive gene, IMMUTANS (IM). This gene encodes the IM protein, which is a chloroplast homolog of the mitochondrial alternative oxidase. Because the white sectors of im accumulate the noncolored carotenoid, phytoene, IM likely serves as a redox component in phytoene desaturation. In this paper, we show that IM has a global impact on plant growth and development and is required for the differentiation of multiple plastid types, including chloroplasts, amyloplasts, and etioplasts. IM promoter activity and IM mRNAs are also expressed ubiquitously in Arabidopsis. IM transcript levels correlate with carotenoid accumulation in some, but not all, tissues. This suggests that IM function is not limited to carotenogenesis. Leaf anatomy is radically altered in the green and white sectors of im: Mesophyll cell sizes are dramatically enlarged in the green sectors and palisade cells fail to expand in the white sectors. The green im sectors also have significantly higher than normal rates of O(2) evolution and elevated chlorophyll a/b ratios, typical of those found in "sun" leaves. We conclude that the changes in structure and photosynthetic function of the green leaf sectors are part of an adaptive mechanism that attempts to compensate for a lack of photosynthesis in the white leaf sectors, while maximizing the ability of the plant to avoid photodamage.

          Related collections

          Author and article information

          Journal
          Plant Physiol
          Plant physiology
          American Society of Plant Biologists (ASPB)
          0032-0889
          0032-0889
          Sep 2001
          : 127
          : 1
          Affiliations
          [1 ] Department of Botany and Interdepartmental Genetics Program, Iowa State University, Ames, Iowa 50011, USA.
          Article
          10.1104/pp.127.1.67
          117963
          11553735
          5c36347d-bfb6-4ce5-b999-c9f3f7149685
          History

          Comments

          Comment on this article