50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipid Exchange between Borrelia burgdorferi and Host Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Borrelia burgdorferi, the agent of Lyme disease, has cholesterol and cholesterol-glycolipids that are essential for bacterial fitness, are antigenic, and could be important in mediating interactions with cells of the eukaryotic host. We show that the spirochetes can acquire cholesterol from plasma membranes of epithelial cells. In addition, through fluorescent and confocal microscopy combined with biochemical approaches, we demonstrated that B. burgdorferi labeled with the fluorescent cholesterol analog BODIPY-cholesterol or 3H-labeled cholesterol transfer both cholesterol and cholesterol-glycolipids to HeLa cells. The transfer occurs through two different mechanisms, by direct contact between the bacteria and eukaryotic cell and/or through release of outer membrane vesicles. Thus, two-way lipid exchange between spirochetes and host cells can occur. This lipid exchange could be an important process that contributes to the pathogenesis of Lyme disease.

          Author Summary

          Lyme disease, the most prevalent arthropod-borne disease in North America, is caused by the spirochete Borrelia burgdorferi. Cholesterol is a significant component of the B. burgdorferi membrane lipids, and is processed to make cholesterol-glycolipids. Our interest in the presence of cholesterol in B. burgdorferi recently led to the identification and characterization of eukaryotic-like lipid rafts in the spirochete. The presence of free cholesterol and cholesterol-glycolipids in B. burgdorferi creates an opportunity for lipid-lipid interactions with constituents of the lipid rafts in eukaryotic cells. We present evidence that there is a two-way exchange of lipids between B. burgdorferi and epithelial cells. Spirochetes are unable to synthesize cholesterol, but can acquire it from the plasma membrane of epithelial cells. In addition, free cholesterol and cholesterol-glycolipids from B. burgdorferi are transferred to epithelial cells through direct contact and through outer membrane vesicles. The exchange of cholesterol between spirochete and host could be an important aspect of the pathogenesis of Lyme disease.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid method of total lipid extraction and purification.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes.

            In little more than 30 years, Lyme disease, which is caused by the spirochaete Borrelia burgdorferi, has risen from relative obscurity to become a global public health problem and a prototype of an emerging infection. During this period, there has been an extraordinary accumulation of knowledge on the phylogenetic diversity, molecular biology, genetics and host interactions of B. burgdorferi. In this Review, we integrate this large body of information into a cohesive picture of the molecular and cellular events that transpire as Lyme disease spirochaetes transit between their arthropod and vertebrate hosts during the enzootic cycle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and cultivation of Lyme disease spirochetes.

              A Barbour (1984)
              The successful isolation and cultivation of Lyme disease spirochetes traces its lineage to early attempts at cultivating relapsing fever borreliae. Observations on the growth of Lyme disease spirochetes under different in vitro conditions may yield important clues to both the metabolic characteristics of these newly discovered organisms and the pathogenesis of Lyme disease. Images FIG. 1
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2013
                January 2013
                10 January 2013
                : 9
                : 1
                : e1003109
                Affiliations
                [1 ]Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
                [2 ]Department of Pediatrics, Columbia University, New York, New York, United States of America
                [3 ]State of New York Department of Health, Stony Brook University, Stony Brook, New York, United States of America
                [4 ]Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
                Medical College of Wisconsin, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JTC AMT TJL EL JLB. Performed the experiments: JTC. Analyzed the data: JTC. Contributed reagents/materials/analysis tools: JLC EL. Wrote the paper: JTC JLB.

                Article
                PPATHOGENS-D-12-02049
                10.1371/journal.ppat.1003109
                3542181
                23326230
                5c47296c-6354-4131-8fc0-9021aca516e3
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 August 2012
                : 12 November 2012
                Page count
                Pages: 17
                Funding
                This work supported by NIH grants RO1-AI-027044, RO1-AR-040445 to JLB; Northeast Biodefense Center Grant U54AI-057158 (Lipkin) to AMT; and R01-GM-099892 to EL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Bacterial Pathogens
                Gram Negative
                Host-Pathogen Interaction
                Microbial Pathogens

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article