23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Langerhans cell homeostasis and differentiation depends on PU.1, the latter via regulation of TGF-β–dependent binding of PU.1 to the regulatory elements of RUNX3.

          Abstract

          Langerhans cells (LCs) are the unique dendritic cells found in the epidermis. While a great deal of attention has focused on defining the developmental origins of LCs, reports addressing the transcriptional network ruling their differentiation remain sparse. We addressed the function of a group of key DC transcription factors—PU.1, ID2, IRF4, and IRF8—in the establishment of the LC network. We show that although steady-state LC homeostasis depends on PU.1 and ID2, the latter is dispensable for bone marrow–derived LCs. PU.1 controls LC differentiation by regulating the expression of the critical TGF-β responsive transcription factor RUNX3. PU.1 directly binds to the Runx3 regulatory elements in a TGF-β–dependent manner, whereas ectopic expression of RUNX3 rescued LC differentiation in the absence of PU.1 and promoted LC differentiation from PU.1-sufficient progenitors. These findings highlight the dual molecular network underlying LC differentiation, and show the central role of PU.1 in these processes.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity.

          Although in vitro observations suggest that cross-presentation of antigens is mediated primarily by CD8alpha+ dendritic cells, in vivo analysis has been hampered by the lack of systems that selectively eliminate this cell lineage. We show that deletion of the transcription factor Batf3 ablated development of CD8alpha+ dendritic cells, allowing us to examine their role in immunity in vivo. Dendritic cells from Batf3-/- mice were defective in cross-presentation, and Batf3-/- mice lacked virus-specific CD8+ T cell responses to West Nile virus. Importantly, rejection of highly immunogenic syngeneic tumors was impaired in Batf3-/- mice. These results suggest an important role for CD8alpha+ dendritic cells and cross-presentation in responses to viruses and in tumor rejection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch–RBP-J signaling controls the homeostasis of CD8− dendritic cells in the spleen

            Signaling through Notch receptors and their transcriptional effector RBP-J is essential for lymphocyte development and function, whereas its role in other immune cell types is unclear. We tested the function of the canonical Notch–RBP-J pathway in dendritic cell (DC) development and maintenance in vivo. Genetic inactivation of RBP-J in the bone marrow did not preclude DC lineage commitment but caused the reduction of splenic DC fraction. The inactivation of RBP-J in DCs using a novel DC-specific deleter strain caused selective loss of the splenic CD8− DC subset and reduced the frequency of cytokine-secreting CD8− DCs after challenge with Toll-like receptor ligands. In contrast, other splenic DC subsets and DCs in the lymph nodes and tissues were unaffected. The RBP-J–deficient splenic CD8− DCs were depleted at the postprogenitor stage, exhibited increased apoptosis, and lost the expression of the Notch target gene Deltex1. In the spleen, CD8− DCs were found adjacent to cells expressing the Notch ligand Delta-like 1 in the marginal zone (MZ). Thus, canonical Notch–RBP-J signaling controls the maintenance of CD8− DCs in the splenic MZ, revealing an unexpected role of the Notch pathway in the innate immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Krüppel-like factor 4 regulates macrophage polarization.

              Current paradigms suggest that two macrophage subsets, termed M1 and M2, are involved in inflammation and host defense. While the distinct functions of M1 and M2 macrophages have been intensively studied - the former are considered proinflammatory and the latter antiinflammatory - the determinants of their speciation are incompletely understood. Here we report our studies that identify Krüppel-like factor 4 (KLF4) as a critical regulator of macrophage polarization. Macrophage KLF4 expression was robustly induced in M2 macrophages and strongly reduced in M1 macrophages, observations that were recapitulated in human inflammatory paradigms in vivo. Mechanistically, KLF4 was found to cooperate with Stat6 to induce an M2 genetic program and inhibit M1 targets via sequestration of coactivators required for NF-κB activation. KLF4-deficient macrophages demonstrated increased proinflammatory gene expression, enhanced bactericidal activity, and altered metabolism. Furthermore, mice bearing myeloid-specific deletion of KLF4 exhibited delayed wound healing and were predisposed to developing diet-induced obesity, glucose intolerance, and insulin resistance. Collectively, these data identify KLF4 as what we believe to be a novel regulator of macrophage polarization.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                16 December 2013
                : 210
                : 13
                : 2967-2980
                Affiliations
                [1 ]The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
                [2 ]Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
                [3 ]Tsinghua-Peking University Joint Centre for Life Sciences, Tsinghua University School of Medicine, Beijing 100084, China
                [4 ]Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
                Author notes
                CORRESPONDENCE Stephen Nutt: nutt@ 123456wehi.edu.au
                Article
                20130930
                10.1084/jem.20130930
                3865480
                24249112
                5c4ef136-2d8b-42b3-83f3-1da0b3e9db20
                © 2013 Chopin et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 6 May 2013
                : 24 October 2013
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article