0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ralentir la progression de l’insuffisance rénale chronique : espoirs et déceptions. Le cas de la polykystose rénale autosomique dominante

       
      La Presse Médicale
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Autosomal dominant polycystic kidney disease.

          Autosomal dominant polycystic kidney disease is the most prevalent, potentially lethal, monogenic disorder. It is associated with large interfamilial and intrafamilial variability, which can be explained to a large extent by its genetic heterogeneity and modifier genes. An increased understanding of the disorder's underlying genetic, molecular, and cellular mechanisms and a better appreciation of its progression and systemic manifestations have laid out the foundation for the development of clinical trials and potentially effective treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein.

            A second gene for autosomal dominant polycystic kidney disease was identified by positional cloning. Nonsense mutations in this gene (PKD2) segregated with the disease in three PKD2 families. The predicted 968-amino acid sequence of the PKD2 gene product has six transmembrane spans with intracellular amino- and carboxyl-termini. The PKD2 protein has amino acid similarity with PKD1, the Caenorhabditis elegans homolog of PKD1, and the family of voltage-activated calcium (and sodium) channels, and it contains a potential calcium-binding domain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polycystic kidney disease.

              A number of inherited disorders result in renal cyst development. The most common form, autosomal dominant polycystic kidney disease (ADPKD), is a disorder most often diagnosed in adults and caused by mutation in PKD1 or PKD2. The PKD1 protein, polycystin-1, is a large receptor-like protein, whereas polycystin-2 is a transient receptor potential channel. The polycystin complex localizes to primary cilia and may act as a mechanosensor essential for maintaining the differentiated state of epithelia lining tubules in the kidney and biliary tract. Elucidation of defective cellular processes has highlighted potential therapies, some of which are now being tested in clinical trials. ARPKD is the neonatal form of PKD and is associated with enlarged kidneys and biliary dysgenesis. The disease phenotype is highly variable, ranging from neonatal death to later presentation with minimal kidney disease. ARPKD is caused by mutation in PKHD1, and two truncating mutations are associated with neonatal lethality. The ARPKD protein, fibrocystin, is localized to cilia/basal body and complexes with polycystin-2. Rare, syndromic forms of PKD also include defects of the eye, central nervous system, digits, and/or neural tube and highlight the role of cilia and pathways such as Wnt and Hh in their pathogenesis.
                Bookmark

                Author and article information

                Journal
                La Presse Médicale
                La Presse Médicale
                Elsevier BV
                07554982
                November 2011
                November 2011
                : 40
                : 11
                : 1059-1064
                Article
                10.1016/j.lpm.2011.08.001
                5c5470aa-94a0-4679-a100-8892e18d7659
                © 2011

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article