8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intraoperative Peritoneal Interleukin-6 Concentration Changes in Relation to the High-Mobility Group Protein B1 and Heat Shock Protein 70 Levels in Children Undergoing Cholecystectomy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim was the evaluation of IL-6 concentration in peritoneal lavage fluid of children which underwent cholecystectomy to ascertain if there is a difference in early inflammatory response depending on the type of surgical approach (open vs. laparoscopy). The analysis of high-mobility group protein B1 (HMGB1) and heat shock protein 70 (HSP70) was performed to find out if the source of IL-6 was related to tissue damage. IL-6 concentration in peritoneal lavage fluid samples, obtained at the beginning and at the end of the laparoscopic ( N = 23) and open cholecystectomy ( N = 14), was tested with a routinely used electrochemiluminescence assay. The concentrations of HMGB1 and HSP70 were analyzed with the use of an ELISA method. Statistical analysis was performed using the STATISTICA PL release 12.5 Program. The differences were assessed using the Mann-Whitney U test and Wilcoxon matched pairs test. Correlations were studied by using the Spearman correlation test. Our results demonstrated significant peritoneal lavage fluid IL-6 concentration growth measured at the end of the cholecystectomy as compared to the beginning, regardless of the type of the procedure. IL-6 growth during open cholecystectomy was greater compared to laparoscopic cholecystectomy (62.51-fold vs. 3.19-fold). IL-6 concentration did not correlate with HMGB1 and HSP70, which indicate that the significant growth of this cytokine was not related to mechanical tissue damage due to surgical procedure. A clinical significance of the study could be related to the fact that the evaluation of IL-6 concentration in peritoneal lavage fluid may be useful to assess an early local inflammatory response.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          HMG-1 as a late mediator of endotoxin lethality in mice.

          Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4.

            Recent studies have initiated a paradigm shift in the understanding of the function of heat shock proteins (HSP). It is now clear that HSP can and do exit mammalian cells, interact with cells of the immune system, and exert immunoregulatory effects. We recently demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca(2+) flux, activate NF-kappaB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes. Here for the first time, we report that HSP70-induced proinflammatory cytokine production is mediated via the MyD88/IRAK/NF-kappaB signal transduction pathway and that HSP70 utilizes both TLR2 (receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) to transduce its proinflammatory signal in a CD14-dependent fashion. These studies now pave the way for the development of highly effective pharmacological or molecular tools that will either up-regulate or suppress HSP70-induced functions in conditions where HSP70 effects are desirable (cancer) or disorders where HSP70 effects are undesirable (arthritis and arteriosclerosis).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine.

              Here, we demonstrate a previously unknown function for the 70-kDa heat-shock protein (HSP70) as a cytokine. HSP70 bound with high affinity to the plasma membrane, elicited a rapid intracellular calcium flux, activated nuclear factor (NF)-kappaB and upregulated the expression of pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 in human monocytes. Furthermore, two different signal transduction pathways were activated by exogenous HSP70: one dependent on CD14 and intracellular calcium, which resulted in increased IL-1beta, IL-6 and TNF-alpha; and the other independent of CD14 but dependent on intracellular calcium, which resulted in an increase in TNF-alpha but not IL-1beta or IL-6. These findings indicate that CD14 is a co-receptor for HSP70-mediated signaling in human monocytes and are indicative of an previously unrecognized function for HSP70 as an extracellular protein with regulatory effects on human monocytes, having a dual role as chaperone and cytokine.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi
                0962-9351
                1466-1861
                2020
                8 July 2020
                : 2020
                : 9613105
                Affiliations
                1Department of Biophysics, Medical University of Białystok, Mickiewicza 2a, 15-089 Białystok, Poland
                2Department of Pediatric Surgery and Urology, Medical University of Białystok, Waszyngtona 17, 15-274 Białystok, Poland
                3Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Waszyngtona 15A, 15-269 Białystok, Poland
                Author notes

                Academic Editor: Raffaele Capasso

                Author information
                https://orcid.org/0000-0002-9594-8173
                https://orcid.org/0000-0003-2425-9589
                https://orcid.org/0000-0002-2986-4852
                https://orcid.org/0000-0002-1051-7906
                https://orcid.org/0000-0003-4438-9110
                https://orcid.org/0000-0001-5199-2773
                Article
                10.1155/2020/9613105
                7366196
                5c564d1d-349f-4c13-9ea4-9bc24df58a74
                Copyright © 2020 Marzena Tylicka et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 April 2020
                : 4 June 2020
                : 19 June 2020
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article