41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multispecies Outcomes of Sympatric Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids

      research-article
      , , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The formation of species in the absence of geographic barriers (i.e. sympatric speciation) remains one of the most controversial topics in evolutionary biology. While theoretical models have shown that this most extreme case of primary divergence-with-gene-flow is possible, only a handful of accepted empirical examples exist. And even for the most convincing examples uncertainties remain; complex histories of isolation and secondary contact can make species falsely appear to have originated by sympatric speciation. This alternative scenario is notoriously difficult to rule out. Midas cichlids inhabiting small and remote crater lakes in Nicaragua are traditionally considered to be one of the best examples of sympatric speciation and lend themselves to test the different evolutionary scenarios that could lead to apparent sympatric speciation since the system is relatively small and the source populations known. Here we reconstruct the evolutionary history of two small-scale radiations of Midas cichlids inhabiting crater lakes Apoyo and Xiloá through a comprehensive genomic data set. We find no signs of differential admixture of any of the sympatric species in the respective radiations. Together with coalescent simulations of different demographic models our results support a scenario of speciation that was initiated in sympatry and does not result from secondary contact of already partly diverged populations. Furthermore, several species seem to have diverged simultaneously, making Midas cichlids an empirical example of multispecies outcomes of sympatric speciation. Importantly, however, the demographic models strongly support an admixture event from the source population into both crater lakes shortly before the onset of the radiations within the lakes. This opens the possibility that the formation of reproductive barriers involved in sympatric speciation was facilitated by genetic variants that evolved in a period of isolation between the initial founding population and the secondary migrants that came from the same source population. Thus, the exact mechanisms by which these species arose might be different from what had been thought before.

          Author Summary

          Speciation is the main driver of biological diversity and how species arise is a central question in evolutionary biology. For speciation to occur in sexually reproducing organisms the exchange of genetic material (gene flow) between populations has to be reduced. Ultimately this has to be due to genetically determined reproductive incompatibilities between species. Yet, whether (an initial period of) geographic isolation is necessary for these incompatibilities to evolve has been subject to one of the most persistent debates in evolutionary biology. Sympatric speciation is the most extreme case of primary divergence-with-gene-flow and lies at the heart of this question. However, only few empirical examples of sympatric speciation are generally accepted and in most of these cases some ambiguities and doubts remain. This study provides evidence that the Nicaraguan crater lake cichlids can indeed be considered a valid example of sympatric speciation in the sense that the species themselves probably started to diverge in the absence of geographic barriers. However, the data also suggests that this divergence in sympatry may have been facilitated by genetic variants that evolved during a time of isolation between an initial founding population and a secondary wave of colonizers stemming from the same source population. This highlights the limitations in the definitions of sympatric speciation when the mosaic nature of genomes is taken into account: some of the genetic regions driving divergence may have evolved in allopatry while the populations themselves diverged in sympatry.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          A note on exact tests of Hardy-Weinberg equilibrium.

          Deviations from Hardy-Weinberg equilibrium (HWE) can indicate inbreeding, population stratification, and even problems in genotyping. In samples of affected individuals, these deviations can also provide evidence for association. Tests of HWE are commonly performed using a simple chi2 goodness-of-fit test. We show that this chi2 test can have inflated type I error rates, even in relatively large samples (e.g., samples of 1,000 individuals that include approximately 100 copies of the minor allele). On the basis of previous work, we describe exact tests of HWE together with efficient computational methods for their implementation. Our methods adequately control type I error in large and small samples and are computationally efficient. They have been implemented in freely available code that will be useful for quality assessment of genotype data and for the detection of genetic association or population stratification in very large data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the origin of species by sympatric speciation.

            Understanding speciation is a fundamental biological problem. It is believed that many species originated through allopatric divergence, where new species arise from geographically isolated populations of the same ancestral species. In contrast, the possibility of sympatric speciation (in which new species arise without geographical isolation) has often been dismissed, partly because of theoretical difficulties. Most previous models analysing sympatric speciation concentrated on particular aspects of the problem while neglecting others. Here we present a model that integrates a novel combination of different features and show that sympatric speciation is a likely outcome of competition for resources. We use multilocus genetics to describe sexual reproduction in an individual-based model, and we consider the evolution of assortative mating (where individuals mate preferentially with like individuals) depending either on an ecological character affecting resource use or on a selectively neutral marker trait. In both cases, evolution of assortative mating often leads to reproductive isolation between ecologically diverging subpopulations. When assortative mating depends on a marker trait, and is therefore not directly linked to resource competition, speciation occurs when genetic drift breaks the linkage equilibrium between the marker and the ecological trait. Our theory conforms well with mounting empirical evidence for the sympatric origin of many species.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The genic view of the process of speciation

              Chung-I Wu (2001)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                30 June 2016
                June 2016
                : 12
                : 6
                : e1006157
                Affiliations
                [001]Department of Biology, University of Konstanz, Konstanz, Baden-Württemberg, Germany
                University of Wisconsin–Madison, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AFK AM. Performed the experiments: AFK GMS. Analyzed the data: AFK GMS. Contributed reagents/materials/analysis tools: AM. Wrote the paper: AFK GMS AM.

                Article
                PGENETICS-D-15-02551
                10.1371/journal.pgen.1006157
                4928843
                27362536
                5c578123-15c9-4a96-9aa0-b10cf577f2c3
                © 2016 Kautt et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 October 2015
                : 9 June 2016
                Page count
                Figures: 4, Tables: 3, Pages: 33
                Funding
                AFK was supported by the Landesgraduiertenförderung (LGFG) of the state of Baden-Württemberg and the International Max Planck Research School (IMPRS) for Organismal Biology. GMS was/is supported by the Alexander von Humboldt Foundation and a grant from the Deutsche Forschungsgemeinschaft www.dfg.de (MA 6144/1-1). The study was funded by support of the University of Konstanz and a European Research Council www.erc.europa.eu advanced grant (ERC “GenAdap” 293700) to AM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Earth Sciences
                Marine and Aquatic Sciences
                Bodies of Water
                Lakes
                Ecology and Environmental Sciences
                Aquatic Environments
                Freshwater Environments
                Lakes
                Earth Sciences
                Marine and Aquatic Sciences
                Aquatic Environments
                Freshwater Environments
                Lakes
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Processes
                Speciation
                Sympatric Speciation
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Phylogenetic Analysis
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Phylogenetic Analysis
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Processes
                Speciation
                Biology and Life Sciences
                Genetics
                Heredity
                Gene Flow
                Biology and Life Sciences
                Evolutionary Biology
                Population Genetics
                Gene Flow
                Biology and Life Sciences
                Genetics
                Population Genetics
                Gene Flow
                Biology and Life Sciences
                Population Biology
                Population Genetics
                Gene Flow
                People and Places
                Demography
                Biology and Life Sciences
                Evolutionary Biology
                Population Genetics
                Biology and Life Sciences
                Genetics
                Population Genetics
                Biology and Life Sciences
                Population Biology
                Population Genetics
                Ecology and Environmental Sciences
                Species Colonization
                Custom metadata
                Demultiplexed raw Illumina short read sequencing files have been deposited at the European Nucleotide Archive (ENA) under Project-Number PRJEB12689. Data files for all population genomic and phylogenetic analyses as well as site frequency spectra files are provided as Supporting Information ( S1 Dataset).

                Genetics
                Genetics

                Comments

                Comment on this article