32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The how’s and what’s of vaccine reactogenicity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactogenicity represents the physical manifestation of the inflammatory response to vaccination, and can include injection-site pain, redness, swelling or induration at the injection site, as well as systemic symptoms, such as fever, myalgia, or headache. The experience of symptoms following vaccination can lead to needle fear, long-term negative attitudes and non-compliant behaviours, which undermine the public health impact of vaccination. This review presents current knowledge on the potential causes of reactogenicity, and how host characteristics, vaccine administration and composition factors can influence the development and perception of reactogenicity. The intent is to provide an overview of reactogenicity after vaccination to help the vaccine community, including healthcare professionals, in maintaining confidence in vaccines by promoting vaccination, setting expectations for vaccinees about what might occur after vaccination and reducing anxiety by managing the vaccination setting.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The State of Vaccine Confidence 2016: Global Insights Through a 67-Country Survey

          Background Public trust in immunization is an increasingly important global health issue. Losses in confidence in vaccines and immunization programmes can lead to vaccine reluctance and refusal, risking disease outbreaks and challenging immunization goals in high- and low-income settings. National and international immunization stakeholders have called for better monitoring of vaccine confidence to identify emerging concerns before they evolve into vaccine confidence crises. Methods We perform a large-scale, data-driven study on worldwide attitudes to immunizations. This survey – which we believe represents the largest survey on confidence in immunization to date – examines perceptions of vaccine importance, safety, effectiveness, and religious compatibility among 65,819 individuals across 67 countries. Hierarchical models are employed to probe relationships between individual- and country-level socio-economic factors and vaccine attitudes obtained through the four-question, Likert-scale survey. Findings Overall sentiment towards vaccinations is positive across all 67 countries, however there is wide variability between countries and across world regions. Vaccine-safety related sentiment is particularly negative in the European region, which has seven of the ten least confident countries, with 41% of respondents in France and 36% of respondents in Bosnia & Herzegovina reporting that they disagree that vaccines are safe (compared to a global average of 13%). The oldest age group (65+) and Roman Catholics (amongst all faiths surveyed) are associated with positive views on vaccine sentiment, while the Western Pacific region reported the highest level of religious incompatibility with vaccines. Countries with high levels of schooling and good access to health services are associated with lower rates of positive sentiment, pointing to an emerging inverse relationship between vaccine sentiments and socio-economic status. Conclusions Regular monitoring of vaccine attitudes – coupled with monitoring of local immunization rates – at the national and sub-national levels can identify populations with declining confidence and acceptance. These populations should be prioritized to further investigate the drivers of negative sentiment and to inform appropriate interventions to prevent adverse public health outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interactions between the immune and nervous systems in pain.

            Immune cells and glia interact with neurons to alter pain sensitivity and to mediate the transition from acute to chronic pain. In response to injury, resident immune cells are activated and blood-borne immune cells are recruited to the site of injury. Immune cells not only contribute to immune protection but also initiate the sensitization of peripheral nociceptors. Through the synthesis and release of inflammatory mediators and interactions with neurotransmitters and their receptors, the immune cells, glia and neurons form an integrated network that coordinates immune responses and modulates the excitability of pain pathways. The immune system also reduces sensitization by producing immune-derived analgesic and anti-inflammatory or proresolution agents. A greater understanding of the role of the immune system in pain processing and modulation reveals potential targets for analgesic drug development and new therapeutic opportunities for managing chronic pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular and cellular signatures of human vaccine adjuvants.

              Oil-in-water emulsions are potent human adjuvants used for effective pandemic influenza vaccines; however, their mechanism of action is still unknown. By combining microarray and immunofluorescence analysis, we monitored the effects of the adjuvants MF59 oil-in-water emulsion, CpG, and alum in the mouse muscle. MF59 induced a time-dependent change in the expression of 891 genes, whereas CpG and alum regulated 387 and 312 genes, respectively. All adjuvants modulated a common set of 168 genes and promoted antigen-presenting cell recruitment. MF59 was the stronger inducer of cytokines, cytokine receptors, adhesion molecules involved in leukocyte migration, and antigen-presentation genes. In addition, MF59 triggered a more rapid influx of CD11b+ blood cells compared with other adjuvants. The early biomarkers selected by microarray, JunB and Ptx3, were used to identify skeletal muscle as a direct target of MF59. We propose that oil-in-water emulsions are the most efficient human vaccine adjuvants, because they induce an early and strong immunocompetent environment at the injection site by targeting muscle cells.
                Bookmark

                Author and article information

                Contributors
                +32 26 56 35 34 , caroline.c.herve@gsk.com
                Journal
                NPJ Vaccines
                NPJ Vaccines
                NPJ Vaccines
                Nature Publishing Group UK (London )
                2059-0105
                24 September 2019
                24 September 2019
                2019
                : 4
                : 39
                Affiliations
                [1 ]GRID grid.425090.a, GSK, ; Wavre, Belgium
                [2 ]GRID grid.425088.3, GSK, ; Siena, Italy
                Author information
                http://orcid.org/0000-0002-0794-8748
                http://orcid.org/0000-0003-2411-8065
                Article
                132
                10.1038/s41541-019-0132-6
                6760227
                30622742
                5c5e1919-72be-4f9e-a6ca-ff07be0ea73d
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 February 2019
                : 2 August 2019
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2019

                signs and symptoms,vaccines
                signs and symptoms, vaccines

                Comments

                Comment on this article