38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and bioinformatic characterization of a multidrug resistance associated protein (ABCC) gene in Plasmodium berghei

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The ATP-binding cassette (ABC) superfamily is one of the largest evolutionarily conserved families of proteins. ABC proteins play key roles in cellular detoxification of endobiotics and xenobiotics. Overexpression of certain ABC proteins, among them the multidrug resistance associated protein (MRP), contributes to drug resistance in organisms ranging from human neoplastic cells to parasitic protozoa. In the present study, the Plasmodium berghei mrp gene ( pbmrp) was partially characterized and the predicted protein was classified using bioinformatics in order to explore its putative involvement in drug resistance.

          Methods

          The pbmrp gene from the P. berghei drug sensitive, N clone, was sequenced using a PCR strategy. Classification and domain organization of pbMRP were determined with bioinformatics. The Plasmodium spp. MRPs were aligned and analysed to study their conserved motifs and organization. Gene copy number and organization were determined via Southern blot analysis in both N clone and the chloroquine selected line, RC. Chromosomal Southern blots and RNase protection assays were employed to determine the chromosomal location and expression levels of pbmrp in blood stages.

          Results

          The pbmrp gene is a single copy, intronless gene with a predicted open reading frame spanning 5820 nucleotides. Bioinformatic analyses show that this protein has distinctive features characteristic of the ABCC sub-family. Multiple sequence alignments reveal a high degree of conservation in the nucleotide binding and transmembrane domains within the MRPs from the Plasmodium spp. analysed. Expression of pbmrp was detected in asexual blood stages. Gene organization, copy number and mRNA expression was similar in both lines studied. A chromosomal translocation was observed in the chloroquine selected RC line, from chromosome 13/14 to chromosome 8, when compared to the drug sensitive N clone.

          Conclusion

          In this study, the pbmrp gene was sequenced and classified as a member of the ABCC sub-family. Multiple sequence alignments reveal that this gene is homologous to the Plasmodium y. yoelii and Plasmodium knowlesi mrp, and the Plasmodium vivax and Plasmodium falciparum mrp2 genes. There were no differences in gene organization, copy number, or mRNA expression between N clone and the RC line, but a chromosomal translocation of pbmrp from chromosome 13/14 to chromosome 8 was detected in RC.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery of gene function by expression profiling of the malaria parasite life cycle.

          The completion of the genome sequence for Plasmodium falciparum, the species responsible for most malaria human deaths, has the potential to reveal hundreds of new drug targets and proteins involved in pathogenesis. However, only approximately 35% of the genes code for proteins with an identifiable function. The absence of routine genetic tools for studying Plasmodium parasites suggests that this number is unlikely to change quickly if conventional serial methods are used to characterize encoded proteins. Here, we use a high-density oligonucleotide array to generate expression profiles of human and mosquito stages of the malaria parasite's life cycle. Genes with highly correlated levels and temporal patterns of expression were often involved in similar functions or cellular processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CDD: a database of conserved domain alignments with links to domain three-dimensional structure.

            The Conserved Domain Database (CDD) is a compilation of multiple sequence alignments representing protein domains conserved in molecular evolution. It has been populated with alignment data from the public collections Pfam and SMART, as well as with contributions from colleagues at NCBI. The current version of CDD (v.1.54) contains 3693 such models. CDD alignments are linked to protein sequence and structure data in Entrez. The molecular structure viewer Cn3D serves as a tool to interactively visualize alignments and three-dimensional structure, and to link three-dimensional residue coordinates to descriptions of evolutionary conservation. CDD can be accessed on the World Wide Web at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. Protein query sequences may be compared against databases of position-specific score matrices derived from alignments in CDD, using a service named CD-Search, which can be found at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. CD-Search runs reverse-position-specific BLAST (RPS-BLAST), a variant of the widely used PSI-BLAST algorithm. CD-Search is run by default for protein-protein queries submitted to NCBI's BLAST service at http://www.ncbi.nlm.nih.gov/BLAST.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum.

              Throughout the latter half of this century, the development and spread of resistance to most front-line antimalarial compounds used in the prevention and treatment of the most severe form of human malaria has given cause for grave clinical concern. Polymorphisms in pfmdr1, the gene encoding the P-glycoprotein homologue 1 (Pgh1) protein of Plasmodium falciparum, have been linked to chloroquine resistance; Pgh1 has also been implicated in resistance to mefloquine and halofantrine. However, conclusive evidence of a direct causal association between pfmdr1 and resistance to these antimalarials has remained elusive, and a single genetic cross has suggested that Pgh1 is not involved in resistance to chloroquine and mefloquine. Here we provide direct proof that mutations in Pgh1 can confer resistance to mefloquine, quinine and halofantrine. The same mutations influence parasite resistance towards chloroquine in a strain-specific manner and the level of sensitivity to the structurally unrelated compound, artemisinin. This has important implications for the development and efficacy of future antimalarial agents.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malaria Journal
                BioMed Central
                1475-2875
                2009
                2 January 2009
                : 8
                : 1
                Affiliations
                [1 ]Department of Microbiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan, PR 00936-5067, USA
                [2 ]Department of Radiological Sciences, University of Puerto Rico School of Medicine, PO Box 365067, San Juan, PR 00936-5067, USA
                [3 ]Department of Biochemistry, Universidad Central del Caribe, PO Box 60327, Bayamón, PR 00960-6032, USA
                Article
                1475-2875-8-1
                10.1186/1475-2875-8-1
                2630995
                19118502
                5c678cf3-b365-4b24-aa99-149494873463
                Copyright © 2009 González-Pons et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 August 2008
                : 2 January 2009
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article