11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Allometric scaling of decompression sickness risk in terrestrial mammals; cardiac output explains risk of decompression sickness

      research-article
      a , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A probabilistic model was used to predict decompression sickness (DCS) outcome in pig (70 and 20 kg), hamster (100 g), rat (220 g) and mouse (20 g) following air saturation dives. The data set included 179 pig, 200 hamster, 360 rat, and 224 mouse exposures to saturation pressures ranging from 1.9–15.2 ATA and with varying decompression rates (0.9–156 ATA • min −1). Single exponential kinetics described the tissue partial pressures (P tiss) of N 2: P tiss =  ∫(P amb – P tiss) • τ −1 dt, where P amb is ambient N 2 pressure and τ is a time constant. The probability of DCS [P(DCS)] was predicted from the risk function: P(DCS) = 1−e r , where r = ∫(P tissN 2 − Thr − P amb) • P amb –1 dt, and Thr is a threshold parameter. An equation that scaled τ with body mass included a constant (c) and an allometric scaling parameter ( n), and the best model included n, Thr, and two c. The final model provided accurate predictions for 58 out of 61 dive profiles for pig, hamster, rat, and mouse. Thus, body mass helped improve the prediction of DCS risk in four mammalian species over a body mass range covering 3 orders of magnitude.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals

          C M Bishop (1997)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerobic endurance training reduces bubble formation and increases survival in rats exposed to hyperbaric pressure.

            1. The formation of bubbles is the basis for injury to divers after decompression, a condition known as decompression illness. In the present study we investigated the effect of endurance training in the rat on decompression-induced bubble formation. 2. A total of 52 adult female Sprague-Dawley rats (300-370 g) were randomly assigned to one of two experimental groups: training or sedentary control. Trained rats exercised on a treadmill for 1.5 h per day for 1 day, or for 2 or 6 weeks (5 days per week) at exercise intervals that alternated between 8 min at 85-90% of maximal oxygen uptake (VO2,max) and 2 min at 50-60% of VO2,max. Rats were compressed (simulated dive) in a decompression chamber in pairs, one sedentary and one trained, at a rate of 200 kPa x min(-1) to a pressure of 700 kPa, and maintained for 45 min breathing air. At the end of the exposure period, rats were decompressed linearly to the 'surface' (100 kPa) at a rate of 50 kPa x min(-1). Immediately after reaching the 'surface' (100 kPa) the animals were anaesthetized and the right ventricle was insonated using Doppler ultrasound. 3. Intensity-controlled interval training significantly increased VO2,max by 12 and 60% after 2 and 6 weeks, respectively. At 6 weeks, left and right ventricular weights were 14 and 17 % higher, respectively, in trained compared to control rats. No effect of training was observed on skeletal muscle weight. Bubble formation was significantly reduced in trained rats after both 2 and 6 weeks. However, the same effect was seen after a single bout of aerobic exercise lasting 1.5 h on the day prior to decompression. All of the rats that exercised for 1.5 h and 2 weeks, and most of those that trained for 6 weeks, survived the protocol, whereas most sedentary rats died within 60 min post-decompression. 4. This study shows that aerobic exercise protects rats from severe decompression and death. This may be a result of less bubbling in the trained animals. The data showed that the increase in aerobic capacity per se was not the main mechanism, but rather an acute effect that was most notable 20 h after a single, or the last, exercise bout, with less effect after 48 h.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise and nitric oxide prevent bubble formation: a novel approach to the prevention of decompression sickness?

              Nitrogen dissolves in the blood during dives, but comes out of solution if divers return to normal pressure too rapidly. Nitrogen bubbles cause a range of effects from skin rashes to seizures, coma and death. It is believed that these bubbles form from bubble precursors (gas nuclei). Recently we have shown that a single bout of exercise 20 h, but not 48 h, before a simulated dive prevents bubble formation and protects rats from severe decompression sickness (DCS) and death. Furthermore, we demonstrated that administration of N(omega)-nitro-l-arginine methyl ester, a non-selective inhibitor of NO synthase (NOS), turns a dive from safe to unsafe in sedentary but not exercised rats. Therefore based upon previous data an attractive hypothesis is that it may be possible to use either exercise or NO-releasing agents before a dive to inhibit bubble formation and thus protect against DCS. Consequently, the aims of the present study were to determine whether protection against bubble formation in 'diving' rats was provided by (1) chronic and acute administration of a NO-releasing agent and (2) exercise less than 20 h prior to the dive. NO given for 5 days and then 20 h prior to a dive to 700 kPa lasting 45 min breathing air significantly reduced bubble formation and prevented death. The same effect was seen if NO was given only 30 min before the dive. Exercise 20 h before a dive suppressed bubble formation and prevented death, with no effect at any other time (48, 10, 5 and 0.5 h prior to the dive). Pre-dive activities have not been considered to influence the growth of bubbles and thus the risk of serious DCS. The present novel findings of a protective effect against bubble formation and death by appropriately timed exercise and an NO-releasing agent may form the basis of a new approach to preventing serious decompression sickness.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                02 February 2017
                2017
                : 7
                : 40918
                Affiliations
                [1 ]Fundación Oceanogràfic de la Comunitat Valenciana , c/Gran Vía Marqués del Turia 19 46005, Valencia España.
                Author notes
                Article
                srep40918
                10.1038/srep40918
                5288729
                28150725
                5c68ed67-9a4a-41e5-93d8-78a325127b8c
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 13 October 2016
                : 12 December 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article