+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Holistic Gaze Strategy to Categorize Facial Expression of Varying Intensities


      PLoS ONE

      Public Library of Science

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Using faces representing exaggerated emotional expressions, recent behaviour and eye-tracking studies have suggested a dominant role of individual facial features in transmitting diagnostic cues for decoding facial expressions. Considering that in everyday life we frequently view low-intensity expressive faces in which local facial cues are more ambiguous, we probably need to combine expressive cues from more than one facial feature to reliably decode naturalistic facial affects. In this study we applied a morphing technique to systematically vary intensities of six basic facial expressions of emotion, and employed a self-paced expression categorization task to measure participants' categorization performance and associated gaze patterns. The analysis of pooled data from all expressions showed that increasing expression intensity would improve categorization accuracy, shorten reaction time and reduce number of fixations directed at faces. The proportion of fixations and viewing time directed at internal facial features (eyes, nose and mouth region), however, was not affected by varying levels of intensity. Further comparison between individual facial expressions revealed that although proportional gaze allocation at individual facial features was quantitatively modulated by the viewed expressions, the overall gaze distribution in face viewing was qualitatively similar across different facial expressions and different intensities. It seems that we adopt a holistic viewing strategy to extract expressive cues from all internal facial features in processing of naturalistic facial expressions.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: found
          • Article: not found

          What is "special" about face perception?

          There is growing evidence that face recognition is "special" but less certainty concerning the way in which it is special. The authors review and compare previous proposals and their own more recent hypothesis, that faces are recognized "holistically" (i.e., using relatively less part decomposition than other types of objects). This hypothesis, which can account for a variety of data from experiments on face memory, was tested with 4 new experiments on face perception. A selective attention paradigm and a masking paradigm were used to compare the perception of faces with the perception of inverted faces, words, and houses. Evidence was found of relatively less part-based shape representation for faces. The literatures on machine vision and single unit recording in monkey temporal cortex are also reviewed for converging evidence on face representation. The neuropsychological literature is reviewed for-evidence on the question of whether face representation differs in degree or kind from the representation of other types of objects.
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of emotional faces: salient physical features guide effective visual search.

            In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent, surprised and disgusted faces was found both under upright and inverted display conditions. Inversion slowed down the detection of these faces less than that of others (fearful, angry, and sad). Accordingly, the detection advantage involves processing of featural rather than configural information. The facial features responsible for the detection advantage are located in the mouth rather than the eye region. Computationally modeled visual saliency predicted both attentional orienting and detection. Saliency was greatest for the faces (happy) and regions (mouth) that were fixated earlier and detected faster, and there was close correspondence between the onset of the modeled saliency peak and the time at which observers initially fixated the faces. The authors conclude that visual saliency of specific facial features--especially the smiling mouth--is responsible for facilitated initial orienting, which thus shortens detection. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
              • Record: found
              • Abstract: found
              • Article: not found

              Facial expressions of emotion (KDEF): identification under different display-duration conditions.

              Participants judged which of seven facial expressions (neutrality, happiness, anger, sadness, surprise, fear, and disgust) were displayed by a set of 280 faces corresponding to 20 female and 20 male models of the Karolinska Directed Emotional Faces database (Lundqvist, Flykt, & Ohman, 1998). Each face was presented under free-viewing conditions (to 63 participants) and also for 25, 50, 100, 250, and 500 msec (to 160 participants), to examine identification thresholds. Measures of identification accuracy, types of errors, and reaction times were obtained for each expression. In general, happy faces were identified more accurately, earlier, and faster than other faces, whereas judgments of fearful faces were the least accurate, the latest, and the slowest. Norms for each face and expression regarding level of identification accuracy, errors, and reaction times may be downloaded from www.psychonomic.org/archive/.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                3 August 2012
                : 7
                : 8
                School of Psychology, University of Lincoln, Lincoln, United Kingdom
                University of Granada, Spain
                Author notes

                Competing Interests: The author has declared that no competing interests exist.

                Conceived and designed the experiments: KG. Performed the experiments: KG. Analyzed the data: KG. Contributed reagents/materials/analysis tools: KG. Wrote the paper: KG.


                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 10
                This research was partly supported by Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning, P.R. China; The Leverhulme Trust Grant (RF/2/RFG/2009/0152). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Research Article
                Cognitive Neuroscience
                Sensory Systems
                Visual System
                Social and Behavioral Sciences
                Attention (Behavior)
                Human Performance
                Experimental Psychology
                Sensory Perception
                Social Psychology



                Comment on this article