35
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: A New Frontier in Animal Breeding

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic breeding programs have been paramount in improving the rates of genetic progress of productive efficiency traits in livestock. Such improvement has been accompanied by the intensification of production systems, use of a wider range of precision technologies in routine management practices, and high-throughput phenotyping. Simultaneously, a greater public awareness of animal welfare has influenced livestock producers to place more emphasis on welfare relative to production traits. Therefore, management practices and breeding technologies in livestock have been developed in recent years to enhance animal welfare. In particular, genomic selection can be used to improve livestock social behavior, resilience to disease and other stress factors, and ease habituation to production system changes. The main requirements for including novel behavioral and welfare traits in genomic breeding schemes are: (1) to identify traits that represent the biological mechanisms of the industry breeding goals; (2) the availability of individual phenotypic records measured on a large number of animals (ideally with genomic information); (3) the derived traits are heritable, biologically meaningful, repeatable, and (ideally) not highly correlated with other traits already included in the selection indexes; and (4) genomic information is available for a large number of individuals (or genetically close individuals) with phenotypic records. In this review, we (1) describe a potential route for development of novel welfare indicator traits (using ideal phenotypes) for both genetic and genomic selection schemes; (2) summarize key indicator variables of livestock behavior and welfare, including a detailed assessment of thermal stress in livestock; (3) describe the primary statistical and bioinformatic methods available for large-scale data analyses of animal welfare; and (4) identify major advancements, challenges, and opportunities to generate high-throughput and large-scale datasets to enable genetic and genomic selection for improved welfare in livestock. A wide variety of novel welfare indicator traits can be derived from information captured by modern technology such as sensors, automatic feeding systems, milking robots, activity monitors, video cameras, and indirect biomarkers at the cellular and physiological levels. The development of novel traits coupled with genomic selection schemes for improved welfare in livestock can be feasible and optimized based on recently developed (or developing) technologies. Efficient implementation of genetic and genomic selection for improved animal welfare also requires the integration of a multitude of scientific fields such as cell and molecular biology, neuroscience, immunology, stress physiology, computer science, engineering, quantitative genomics, and bioinformatics.

          Related collections

          Most cited references429

          • Record: found
          • Abstract: found
          • Article: not found

          Behavioural reaction norms: animal personality meets individual plasticity

          Recent studies in the field of behavioural ecology have revealed intriguing variation in behaviour within single populations. Increasing evidence suggests that individual animals differ in their average level of behaviour displayed across a range of contexts (animal 'personality'), and in their responsiveness to environmental variation (plasticity), and that these phenomena can be considered complementary aspects of the individual phenotype. How should this complex variation be studied? Here, we outline how central ideas in behavioural ecology and quantitative genetics can be combined within a single framework based on the concept of 'behavioural reaction norms'. This integrative approach facilitates analysis of phenomena usually studied separately in terms of personality and plasticity, thereby enhancing understanding of their adaptive nature. Copyright 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of total genetic value using genome-wide dense marker maps.

            Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of approximately 50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was simulated with a marker spacing of 1 cM. The markers surrounding every 1-cM region were combined into marker haplotypes. Due to finite population size N(e) = 100, the marker haplotypes were in linkage disequilibrium with the QTL located between the markers. Using least squares, all haplotype effects could not be estimated simultaneously. When only the biggest effects were included, they were overestimated and the accuracy of predicting genetic values of the offspring of the recorded animals was only 0.32. Best linear unbiased prediction of haplotype effects assumed equal variances associated to each 1-cM chromosomal segment, which yielded an accuracy of 0.73, although this assumption was far from true. Bayesian methods that assumed a prior distribution of the variance associated with each chromosome segment increased this accuracy to 0.85, even when the prior was not correct. It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of feature selection techniques in bioinformatics.

              Feature selection techniques have become an apparent need in many bioinformatics applications. In addition to the large pool of techniques that have already been developed in the machine learning and data mining fields, specific applications in bioinformatics have led to a wealth of newly proposed techniques. In this article, we make the interested reader aware of the possibilities of feature selection, providing a basic taxonomy of feature selection techniques, and discussing their use, variety and potential in a number of both common as well as upcoming bioinformatics applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                31 July 2020
                2020
                : 11
                : 793
                Affiliations
                [1] 1Department of Animal Sciences, Purdue University , West Lafayette, IN, United States
                [2] 2Department of Animal Biosciences, University of Guelph , Guelph, ON, Canada
                [3] 3Oak Ridge Institute for Science and Education , Oak Ridge, TN, United States
                [4] 4Department of Comparative Pathobiology, Purdue University , West Lafayette, IN, United States
                [5] 5USDA-ARS Livestock Behavior Research Unit , West Lafayette, IN, United States
                Author notes

                Edited by: Guilherme J. M. Rosa, University of Wisconsin–Madison, United States

                Reviewed by: Eveline M. Ibeagha-Awemu, Agriculture and Agri-Food Canada (AAFC), Canada; Jennie Elizabeth Pryce, AgriBio, La Trobe University, Australia; Florence Phocas, INRA Centre Jouy-en-Josas, France

                *Correspondence: Luiz F. Brito, britol@ 123456purdue.edu

                This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2020.00793
                7411239
                32849798
                5c848237-fd99-49d8-9c1e-2021a6f4c772
                Copyright © 2020 Brito, Oliveira, McConn, Schinckel, Arrazola, Marchant-Forde and Johnson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 April 2020
                : 03 July 2020
                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 425, Pages: 32, Words: 0
                Categories
                Genetics
                Review

                Genetics
                behavioral genomics,big data,digital agriculture,phenomics,genomic information,genomic selection,novel phenotypes,precision livestock

                Comments

                Comment on this article