4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Role of the C-sheet in the maturation of N-glycans on antithrombin: functional relevance of pleiotropic mutations

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The characterization of natural mutants identified in patients with antithrombin deficiency has helped to identify functional domains or regions of this key anticoagulant and the mechanisms involved in the deficiency, as well as to define the clinical prognosis. Recently, we described an abnormal glycosylation in a pleiotropic mutant (K241E) that explained the impaired heparin affinity and the mild risk of thrombosis in carriers.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation.

          Regulation of blood coagulation is critical for maintaining blood flow, while preventing excessive bleeding or thrombosis. One of the principal regulatory mechanisms involves heparin activation of the serpin antithrombin (AT). Inhibition of several coagulation proteases is accelerated by up to 10,000-fold by heparin, either through bridging AT and the protease or by inducing allosteric changes in the properties of AT. The anticoagulant effect of short heparin chains, including the minimal AT-specific pentasaccharide, is mediated exclusively through the allosteric activation of AT towards efficient inhibition of coagulation factors (f) IXa and Xa. Here we present the crystallographic structure of the recognition (Michaelis) complex between heparin-activated AT and S195A fXa, revealing the extensive exosite contacts that confer specificity. The heparin-induced conformational change in AT is required to allow simultaneous contacts within the active site and two distinct exosites of fXa (36-loop and the autolysis loop). This structure explains the molecular basis of protease recognition by AT, and the mechanism of action of the important therapeutic low-molecular-weight heparins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of beta-antithrombin and the effect of glycosylation on antithrombin's heparin affinity and activity.

            Antithrombin is a member of the serpin family of protease inhibitors and the major inhibitor of the blood coagulation cascade. It is unique amongst the serpins in that it circulates in a conformation that is inactive against its target proteases. Activation of antithrombin is brought about by a conformational change initiated upon binding heparin or heparan sulphate. Two isoforms exist in the circulation, alpha-antithrombin and beta-antithrombin, which differ in the amount of glycosylation present on the polypeptide chain; beta-antithrombin lacks the carbohydrate present at Asn135 in alpha-antithrombin. Of the two forms, beta-antithrombin has the higher affinity for heparin and thus functions as the major inhibitor in vivo even though it is the less abundant form. The reason for the differences in heparin affinity between the alpha and beta-forms have been shown to be due to the additional carbohydrate changing the rate of the conformational change. Here, we describe the most accurate structures of alpha-antithrombin and alpha-antithrombin+heparin pentasaccharide reported to date (2.6A and 2.9A resolution, respectively, both re-refinements using old data), and the structure of beta-antithrombin (2.6A resolution). The new structures have a remarkable degree of ordered carbohydrate and include parts of the antithrombin chain not modeled before. The structures have allowed a detailed comparison of the conformational differences between the three. They show that the structural basis of the lower affinity for heparin of alpha-antithrombin over beta-antithrombin is due to the conformational change that occurs upon heparin binding being sterically hindered by the presence of the additional bulky carbohydrate at Asn135.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in the shutter region of antithrombin result in formation of disulfide-linked dimers and severe venous thrombosis.

              Missense mutations causing conformational alterations in serpins can be responsible for protein deficiency associated with human diseases. However, there are few data about conformational consequences of mutations affecting antithrombin, the main hemostatic serpin. To investigate the conformational and clinical effect of mutations affecting the shutter region of antithrombin. We identified two families with significant reduction of circulating antithrombin displaying early and severe venous thrombosis, frequently associated with pregnancy or infection. Mutations were determined by standard molecular methods. Biochemical studies were performed on plasma samples. One variant (P80S) was purified by heparin-affinity chromatography and gel filtration, and evaluated by proteomic analysis. Finally, we modelled the structure of the mutant dimer. We identified two missense mutations affecting the shutter region of antithrombin: P80S and G424R. Carriers of both mutations presented traces of a similar abnormal antithrombin, supporting inefficiently expressed rather than non-expressed variants. The abnormal antithrombin purified from P80S carriers is an inactive disulfide-linked dimer of mutant antithrombin whose properties are consistent with head-to-head insertion of the reactive loop. Our data support the conclusion that missense mutations affecting the shutter region of serpins have specific conformational effects resulting in the formation of mutant oligomers. The consequent inefficiency of secretion explains the accompanying deficiency and loss of function, but the severity of thrombosis associated with these mutations suggests that the oligomers also have new and undefined pathological properties that could be exacerbated by pregnancy or infection.
                Bookmark

                Author and article information

                Journal
                Journal of Thrombosis and Haemostasis
                J Thromb Haemost
                Wiley
                15387933
                July 2014
                July 2014
                June 19 2014
                : 12
                : 7
                : 1131-1140
                Affiliations
                [1 ]Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica HU Morales Meseguer; University of Murcia, IMIB; Murcia Spain
                [2 ]Bioanalysis Group; IMIM-Hospital del Mar; Department of Experimental and Health Sciences; University Pompeu Fabra (UPF); Barcelona Spain
                [3 ]Protein and Peptide Chemistry; Anapharm Biotech; Barcelona Spain
                Article
                10.1111/jth.12606
                24824609
                5c84a4e8-7520-4b1c-bffc-d4e5b241af7d
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article