26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-193b regulates breast cancer cell migration and vasculogenic mimicry by targeting dimethylarginine dimethylaminohydrolase 1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is responsible for metabolism of an endogenous inhibitor of nitric oxide synthase (NOS), asymmetric dimethylarginine (ADMA), which plays a key role in modulating angiogenesis. In addition to angiogenesis, tumours can establish a vascular network by forming vessel-like structures from tumour cells; a process termed vasculogenic mimicry (VM). Here, we identified over-expression of DDAH1 in aggressive MDA-MB-231, MDA-MB-453 and BT549 breast cancer cell lines when compared to normal mammary epithelial cells. DDAH1 expression was inversely correlated with the microRNA miR-193b. In DDAH1 + MDA-MB-231 cells, ectopic expression of miR-193b reduced DDAH1 expression and the conversion of ADMA to citrulline. In DDAH1 MCF7 cells, inhibition of miR-193b elevated DDAH1 expression. Luciferase reporter assays demonstrated DDAH1 as a direct target of miR-193b. MDA-MB-231 cells organised into tube structures in an in vitro assay of VM, which was significantly inhibited by DDAH1 knockdown or miR-193b expression. Mechanistically, we found miR-193b regulates cell proliferation and migration of MDA-MB-231 cells, whilst DDAH1 knockdown inhibited cell migration. These studies represent the first evidence for DDAH1 expression, regulation and function in breast cancer cells, and highlights that targeting DDAH1 expression and/or enzymatic activity may be a valid option in the treatment of aggressive breast cancers.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Global cancer statistics.

            The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Non-coding RNAs in human disease.

              The relevance of the non-coding genome to human disease has mainly been studied in the context of the widespread disruption of microRNA (miRNA) expression and function that is seen in human cancer. However, we are only beginning to understand the nature and extent of the involvement of non-coding RNAs (ncRNAs) in disease. Other ncRNAs, such as PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), transcribed ultraconserved regions (T-UCRs) and large intergenic non-coding RNAs (lincRNAs) are emerging as key elements of cellular homeostasis. Along with microRNAs, dysregulation of these ncRNAs is being found to have relevance not only to tumorigenesis, but also to neurological, cardiovascular, developmental and other diseases. There is great interest in therapeutic strategies to counteract these perturbations of ncRNAs.
                Bookmark

                Author and article information

                Contributors
                julieann.hulin@flinders.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                25 October 2017
                25 October 2017
                2017
                : 7
                : 13996
                Affiliations
                [1 ]ISNI 0000 0000 9685 0624, GRID grid.414925.f, Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, ; Bedford Park, South Australia Australia
                [2 ]Flinders Centre for Innovation in Cancer, Bedford Park, South Australia Australia
                Author information
                http://orcid.org/0000-0002-3714-9381
                Article
                14454
                10.1038/s41598-017-14454-1
                5656623
                29070803
                5ca36c93-5920-4024-bd37-ebda6828bb79
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 March 2017
                : 11 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article