53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When modeling cell signaling networks, a balance must be struck between mechanistic detail and ease of interpretation. In this paper we apply a fuzzy logic framework to the analysis of a large, systematic dataset describing the dynamics of cell signaling downstream of TNF, EGF, and insulin receptors in human colon carcinoma cells. Simulations based on fuzzy logic recapitulate most features of the data and generate several predictions involving pathway crosstalk and regulation. We uncover a relationship between MK2 and ERK pathways that might account for the previously identified pro-survival influence of MK2. We also find unexpected inhibition of IKK following EGF treatment, possibly due to down-regulation of autocrine signaling. More generally, fuzzy logic models are flexible, able to incorporate qualitative and noisy data, and powerful enough to produce quantitative predictions and new biological insights about the operation of signaling networks.

          Author Summary

          Cells use networks of interacting proteins to interpret intra-cellular state and extra-cellular cues and to execute cell-fate decisions. Even when individual proteins are well understood at a molecular level, the dynamics and behavior of networks as a whole are harder to understand. However, deciphering the operation of such networks is key to understanding disease processes and therapeutic opportunities. As a means to study signaling networks, we have modified and applied a fuzzy logic approach originally developed for industrial control. We use fuzzy logic to model the responses of colon cancer cells in culture to combinations of pro-survival and pro-death cytokines, making it possible to interpret quantitative data in the context of abstract information drawn from the literature. Our work establishes that fuzzy logic can be used to understand complex signaling pathways with respect to multi-factorial activity-based protein data and prior knowledge.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Modeling and simulation of genetic regulatory systems: a literature review.

          In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between DNA, RNA, proteins, and small molecules. As most genetic regulatory networks of interest involve many components connected through interlocking positive and negative feedback loops, an intuitive understanding of their dynamics is hard to obtain. As a consequence, formal methods and computer tools for the modeling and simulation of genetic regulatory networks will be indispensable. This paper reviews formalisms that have been employed in mathematical biology and bioinformatics to describe genetic regulatory systems, in particular directed graphs, Bayesian networks, Boolean networks and their generalizations, ordinary and partial differential equations, qualitative differential equations, stochastic equations, and rule-based formalisms. In addition, the paper discusses how these formalisms have been used in the simulation of the behavior of actual regulatory systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Causal protein-signaling networks derived from multiparameter single-cell data.

            Machine learning was applied for the automated derivation of causal influences in cellular signaling networks. This derivation relied on the simultaneous measurement of multiple phosphorylated protein and phospholipid components in thousands of individual primary human immune system cells. Perturbing these cells with molecular interventions drove the ordering of connections between pathway components, wherein Bayesian network computational methods automatically elucidated most of the traditionally reported signaling relationships and predicted novel interpathway network causalities, which we verified experimentally. Reconstruction of network models from physiologically relevant primary single cells might be applied to understanding native-state tissue signaling biology, complex drug actions, and dysfunctional signaling in diseased cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inferring cellular networks using probabilistic graphical models.

              High-throughput genome-wide molecular assays, which probe cellular networks from different perspectives, have become central to molecular biology. Probabilistic graphical models are useful for extracting meaningful biological insights from the resulting data sets. These models provide a concise representation of complex cellular networks by composing simpler submodels. Procedures based on well-understood principles for inferring such models from data facilitate a model-based methodology for analysis and discovery. This methodology and its capabilities are illustrated by several recent applications to gene expression data.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                April 2009
                April 2009
                3 April 2009
                : 5
                : 4
                : e1000340
                Affiliations
                [1 ]Center for Cell Decision Processes, Cambridge, Massachusetts, United States of America
                [2 ]Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
                [3 ]Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
                University of Illinois at Urbana-Champaign, United States of America
                Author notes
                [¤]

                Current address: Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America

                Conceived and designed the experiments: BBA JSR JLM PKS DAL. Performed the experiments: BBA JSR JLM. Analyzed the data: BBA JSR JLM. Contributed reagents/materials/analysis tools: BBA JSR JLM. Wrote the paper: BBA JSR JLM PKS DAL.

                Article
                07-PLCB-RA-0823R3
                10.1371/journal.pcbi.1000340
                2663056
                19343194
                5ca95a0f-0653-4a61-8363-b54aa86d5cf8
                Aldridge et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 December 2007
                : 24 February 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Cell Biology/Cell Signaling
                Computational Biology/Systems Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article