200
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sequencing of a highly virulent strain of Pseudomonas aeruginosa and comparison to a previously sequenced, less pathogenic, strain, together with experimental testing in a C. elegans model, suggests that Pseudomonas virulence is multifactorial and combinatorial.

          Abstract

          Background

          Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an important opportunistic human pathogen. Generally, the acquisition of genes in the form of pathogenicity islands distinguishes pathogenic isolates from nonpathogens. We therefore sequenced a highly virulent strain of P. aeruginosa, PA14, and compared it with a previously sequenced (and less pathogenic) strain, PAO1, to identify novel virulence genes.

          Results

          The PA14 and PAO1 genomes are remarkably similar, although PA14 has a slightly larger genome (6.5 megabses [Mb]) than does PAO1 (6.3 Mb). We identified 58 PA14 gene clusters that are absent in PAO1 to determine which of these genes, if any, contribute to its enhanced virulence in a Caenorhabditis elegans pathogenicity model. First, we tested 18 additional diverse strains in the C. elegans model and observed a wide range of pathogenic potential; however, genotyping these strains using a custom microarray showed that the presence of PA14 genes that are absent in PAO1 did not correlate with the virulence of these strains. Second, we utilized a full-genome nonredundant mutant library of PA14 to identify five genes (absent in PAO1) required for C. elegans killing. Surprisingly, although these five genes are present in many other P. aeruginosa strains, they do not correlate with virulence in C. elegans.

          Conclusion

          Genes required for pathogenicity in one strain of P. aeruginosa are neither required for nor predictive of virulence in other strains. We therefore propose that virulence in this organism is both multifactorial and combinatorial, the result of a pool of pathogenicity-related genes that interact in various combinations in different genetic backgrounds.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Consed: a graphical tool for sequence finishing.

          Sequencing of large clones or small genomes is generally done by the shotgun approach (Anderson et al. 1982). This has two phases: (1) a shotgun phase in which a number of reads are generated from random subclones and assembled into contigs, followed by (2) a directed, or finishing phase in which the assembly is inspected for correctness and for various kinds of data anomalies (such as contaminant reads, unremoved vector sequence, and chimeric or deleted reads), additional data are collected to close gaps and resolve low quality regions, and editing is performed to correct assembly or base-calling errors. Finishing is currently a bottleneck in large-scale sequencing efforts, and throughput gains will depend both on reducing the need for human intervention and making it as efficient as possible. We have developed a finishing tool, consed, which attempts to implement these principles. A distinguishing feature relative to other programs is the use of error probabilities from our programs phred and phrap as an objective criterion to guide the entire finishing process. More information is available at http:// www.genome.washington.edu/consed/consed. html.
            • Record: found
            • Abstract: found
            • Article: not found

            An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants.

            Random transposon insertion libraries have proven invaluable in studying bacterial genomes. Libraries that approach saturation must be large, with multiple insertions per gene, making comprehensive genome-wide scanning difficult. To facilitate genome-scale study of the opportunistic human pathogen Pseudomonas aeruginosa strain PA14, we constructed a nonredundant library of PA14 transposon mutants (the PA14NR Set) in which nonessential PA14 genes are represented by a single transposon insertion chosen from a comprehensive library of insertion mutants. The parental library of PA14 transposon insertion mutants was generated by using MAR2xT7, a transposon compatible with transposon-site hybridization and based on mariner. The transposon-site hybridization genetic footprinting feature broadens the utility of the library by allowing pooled MAR2xT7 mutants to be individually tracked under different experimental conditions. A public, internet-accessible database (the PA14 Transposon Insertion Mutant Database, http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi) was developed to facilitate construction, distribution, and use of the PA14NR Set. The usefulness of the PA14NR Set in genome-wide scanning for phenotypic mutants was validated in a screen for attachment to abiotic surfaces. Comparison of the genes disrupted in the PA14 transposon insertion library with an independently constructed insertion library in P. aeruginosa strain PAO1 provides an estimate of the number of P. aeruginosa essential genes.
              • Record: found
              • Abstract: found
              • Article: not found

              Common virulence factors for bacterial pathogenicity in plants and animals.

              A Pseudomonas aeruginosa strain (UCBPP-PA14) is infectious both in an Arabidopsis thaliana leaf infiltration model and in a mouse full-thickness skin burn model. UCBPP-PA14 exhibits ecotype specificity for Arabidopsis, causing a range of symptoms from none to severe in four different ecotypes. In the mouse model, UCBPP-PA14 is as lethal as other well-studied P. aeruginosa strains. Mutations in the UCBPP-PA14 toxA, plcS, and gacA genes resulted in a significant reduction in pathogenicity in both hosts, indicating that these genes encode virulence factors required for the full expression of pathogenicity in both plants and animals.

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2006
                12 October 2006
                : 7
                : 10
                : R90
                Affiliations
                [1 ]Department of Molecular Biology, Massachusetts General Hospital, Cambridge Street, Boston, Massachusetts, 02114, USA
                [2 ]Department of Genetics, Harvard Medical School, Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
                [3 ]Current address: Microbia, Inc., Bent Street, Cambridge, Massachusetts, 02141, USA
                [4 ]Envivo Pharmaceuticals, Inc., Arsenal Street, Watertown, Massachusetts, 02472, USA
                [5 ]Department of Microbiology and Molecular Genetics, Harvard Medical School, Longwood Avenue, Boston, Massachusetts, 02115. USA
                [6 ]Department of Surgery, Massachusetts General Hospital, Fruit Street, Boston, Massachusetts, 02114, USA
                [7 ]Current address: Université de Montréal, Station Centre-ville, Montréal, H3C 3J7, Canada
                [8 ]Current address: INRS-Institut Armand-Frappier, boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
                [9 ]Current address: Cubist Pharmaceuticals, Inc., Hayden Avenue, Lexington, Massachusetts, 02421, USA
                [10 ]Harvard Medical School - Partners Healthcare Center for Genetics and Genomics, Landsdowne Street, Cambridge, Massachusetts, 02139, USA
                [11 ]Current address: Core Facilities, Cornell University, Thurston Avenue, Ithaca, New York, 14850, USA
                Article
                gb-2006-7-10-r90
                10.1186/gb-2006-7-10-r90
                1794565
                17038190
                5caaf1de-513b-4ffe-9397-4da689ef3a3b
                Copyright © 2006 Lee et al.; licensee BioMed Central Ltd

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 July 2006
                : 25 September 2006
                : 12 October 2006
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article

                Related Documents Log