28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists

      review-article
      Vaccines
      MDPI
      interferon, viruses, immune evasion, JAK/STAT pathway, vaccines, innate immunity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The interferon (IFN) induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) signalling pathway by IFNs leads to the upregulation of hundreds of interferon stimulated genes (ISGs) for which, many have the ability to rapidly kill viruses within infected cells. During the long course of evolution, viruses have evolved an extraordinary range of strategies to counteract the host immune responses in particular by targeting the JAK/STAT signalling pathway. Understanding how the IFN system is inhibited has provided critical insights into viral virulence and pathogenesis. Moreover, identification of factors encoded by viruses that modulate the JAK/STAT pathway has opened up opportunities to create new anti-viral drugs and rationally attenuated new generation vaccines, particularly for RNA viruses, by reverse genetics.

          Related collections

          Most cited references188

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning of a human parvovirus by molecular screening of respiratory tract samples.

          The identification of new virus species is a key issue for the study of infectious disease but is technically very difficult. We developed a system for large-scale molecular virus screening of clinical samples based on host DNA depletion, random PCR amplification, large-scale sequencing, and bioinformatics. The technology was applied to pooled human respiratory tract samples. The first experiments detected seven human virus species without the use of any specific reagent. Among the detected viruses were one coronavirus and one parvovirus, both of which were at that time uncharacterized. The parvovirus, provisionally named human bocavirus, was in a retrospective clinical study detected in 17 additional patients and associated with lower respiratory tract infections in children. The molecular virus screening procedure provides a general culture-independent solution to the problem of detecting unknown virus species in single or pooled samples. We suggest that a systematic exploration of the viruses that infect humans, "the human virome," can be initiated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex.

            We report here the identification of a ligand-receptor system that, upon engagement, leads to the establishment of an antiviral state. Three closely positioned genes on human chromosome 19 encode distinct but paralogous proteins, which we designate interferon-lambda1 (IFN-lambda1), IFN-lambda2 and IFN-lambda3 (tentatively designated as IL-29, IL-28A and IL-28B, respectively, by HUGO). The expression of IFN-lambda mRNAs was inducible by viral infection in several cell lines. We identified a distinct receptor complex that is utilized by all three IFN-lambda proteins for signaling and is composed of two subunits, a receptor designated CRF2-12 (also designated as IFN-lambdaR1) and a second subunit, CRF2-4 (also known as IL-10R2). Both receptor chains are constitutively expressed on a wide variety of human cell lines and tissues and signal through the Jak-STAT (Janus kinases-signal transducers and activators of transcription) pathway. This receptor-ligand system may contribute to antiviral or other defenses by a mechanism similar to, but independent of, type I IFNs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.

              Through the study of transcriptional activation in response to interferon alpha (IFN-alpha) and interferon gamma (IFN-gamma), a previously unrecognized direct signal transduction pathway to the nucleus has been uncovered: IFN-receptor interaction at the cell surface leads to the activation of kinases of the Jak family that then phosphorylate substrate proteins called STATs (signal transducers and activators of transcription). The phosphorylated STAT proteins move to the nucleus, bind specific DNA elements, and direct transcription. Recognition of the molecules involved in the IFN-alpha and IFN-gamma pathway has led to discoveries that a number of STAT family members exist and that other polypeptide ligands also use the Jak-STAT molecules in signal transduction.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Vaccines (Basel)
                Vaccines (Basel)
                vaccines
                Vaccines
                MDPI
                2076-393X
                29 June 2016
                September 2016
                : 4
                : 3
                : 23
                Affiliations
                Department of Microbiology and Immunology, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand; stephen.fleming@ 123456otago.ac.nz ; Tel.: +64-3-4797727; Fax: +64-3-4797744
                Article
                vaccines-04-00023
                10.3390/vaccines4030023
                5041017
                27367734
                5cb3070c-cc2c-4c9d-97a1-ec7cfc2c02be
                © 2016 by the author; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 May 2016
                : 21 June 2016
                Categories
                Review

                interferon,viruses,immune evasion,jak/stat pathway,vaccines,innate immunity

                Comments

                Comment on this article