9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Breast cancer metastasis: markers and models.

          Breast cancer starts as a local disease, but it can metastasize to the lymph nodes and distant organs. At primary diagnosis, prognostic markers are used to assess whether the transition to systemic disease is likely to have occurred. The prevailing model of metastasis reflects this view--it suggests that metastatic capacity is a late, acquired event in tumorigenesis. Others have proposed the idea that breast cancer is intrinsically a systemic disease. New molecular technologies, such as DNA microarrays, support the idea that metastatic capacity might be an inherent feature of breast tumours. These data have important implications for prognosis prediction and our understanding of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy.

            Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)-dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor-bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8+ T-cell-dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8+ T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor.

              To identify selective steps in metastasis, those that eliminate nonmetastatic tumor cells more efficiently than metastatic cells, we have evaluated the sequential dissemination of tumor cells from a mammary fatpad, using both metastatic (4T1 and 66cl4) and nonmetastatic (67NR, 168FARN, and 4TO7) subpopulations of a single mouse mammary tumor. Each of these variant subpopulations is resistant to one or more selective drugs so they could be quantitatively identified by colony formation in selective media. We found that the 2 metastatic cell lines metastasized by different routes and that the nonmetastatic tumor cell lines failed at different points in dissemination. Line 67NR did not leave the primary site; clonogenic tumor cells were not detected in the nodes, blood, or lungs during the experiment (7 weeks). Tumor line 168FARN disseminated from the primary tumor because clonogenic cells were cultured from the draining lymph nodes throughout the experiment. However, dissemination essentially stopped in the node as cells were rarely isolated from blood, lungs, or lives. Whether 168FARN cells failed to reach these tissues or were killed very rapidly after traversing the lymph node is unknown. Line 4TO7 cells disseminated via the blood and were consistently recovered from lungs by day 19 but failed to proliferate. This panel of 5 subpopulations thus identifies different points of selective failure in tumor cell dissemination and should be valuable in the assessment of antimetastatic therapies.
                Bookmark

                Author and article information

                Contributors
                +44 (0) 151 794 9555 , amielgo@liverpool.ac.uk
                Journal
                Oncogene
                Oncogene
                Oncogene
                Nature Publishing Group UK (London )
                0950-9232
                1476-5594
                25 January 2018
                25 January 2018
                2018
                : 37
                : 15
                : 2022-2036
                Affiliations
                [1 ]ISNI 0000 0004 1936 8470, GRID grid.10025.36, Department of Molecular and Clinical Cancer Medicine, , University of Liverpool, ; Liverpool, UK
                [2 ]ISNI 0000 0004 1936 8470, GRID grid.10025.36, Department of Physiology, , University of Liverpool, ; Liverpool, UK
                [3 ]ISNI 0000 0001 2107 4242, GRID grid.266100.3, Department of Pathology, , University of California San Diego, ; La Jolla, USA
                [4 ]ISNI 0000000405446183, GRID grid.486422.e, Boehringer Ingelheim RCV GmbH & Co KG, Pharmacology and Translational Research, ; Vienna, Austria
                [5 ]ISNI 0000000405446183, GRID grid.486422.e, Boehringer Ingelheim RCV GmbH & Co KG Medicine and Translational Research, ; Vienna, Austria
                [6 ]Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
                Article
                115
                10.1038/s41388-017-0115-x
                5895608
                29367764
                5cc7a65c-fc20-42d3-b186-9d025b2ccd25
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 July 2017
                : 15 November 2017
                : 14 December 2017
                Categories
                Article
                Custom metadata
                © Macmillan Publishers Limited, part of Springer Nature 2018

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article