9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cyclin-Dependent Kinase CRK9, Required for Spliced Leader trans Splicing of Pre-mRNA in Trypanosomes, Functions in a Complex with a New L-Type Cyclin and a Kinetoplastid-Specific Protein

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In eukaryotes, cyclin-dependent kinases (CDKs) control the cell cycle and critical steps in gene expression. The lethal parasite Trypanosoma brucei, member of the phylogenetic order Kinetoplastida, possesses eleven CDKs which, due to high sequence divergence, were generically termed CDC2-related kinases (CRKs). While several CRKs have been implied in the cell cycle, CRK9 was the first trypanosome CDK shown to control the unusual mode of gene expression found in kinetoplastids. In these organisms, protein-coding genes are arranged in tandem arrays which are transcribed polycistronically. Individual mRNAs are processed from precursor RNA by spliced leader (SL) trans splicing and polyadenylation. CRK9 ablation was lethal in cultured trypanosomes, causing a block of trans splicing before the first transesterification step. Additionally, CRK9 silencing led to dephosphorylation of RNA polymerase II and to hypomethylation of the SL cap structure. Here, we tandem affinity-purified CRK9 and, among potential CRK9 substrates and modifying enzymes, discovered an unusual tripartite complex comprising CRK9, a new L-type cyclin (CYC12) and a protein, termed CRK9-associated protein (CRK9AP), that is only conserved among kinetoplastids. Silencing of either CYC12 or CRK9AP reproduced the effects of depleting CRK9, identifying these proteins as functional partners of CRK9 in vivo. While mammalian cyclin L binds to CDK11, the CRK9 complex deviates substantially from that of CDK11, requiring CRK9AP for efficient CRK9 complex formation and autophosphorylation in vitro. Interference with this unusual CDK rescued mice from lethal trypanosome infections, validating CRK9 as a potential chemotherapeutic target.

          Author Summary

          Kinetoplastids are vector-borne, unicellular parasites that cause devastating human diseases in the tropics and subtropics of the world. Interestingly, kinetoplastids express protein-coding genes differently than other eukaryotes by producing polycistronic pre-mRNAs that require processing into individual mRNAs by spliced leader trans splicing and polyadenylation. While each parasite mRNA is trans-spliced, this particular splicing process is absent in mammalian and insect hosts of kinetoplastids. We recently discovered that the cyclin-dependent kinase (CDK) CRK9 of the kinetoplastid Trypanosoma brucei is essential for trans splicing and parasite viability. Due to the essential roles of CDKs in cell proliferation, CDK inhibition is an established strategy against cancer, suggesting that chemotherapeutic intervention of CRK9 will halt proliferation of kinetoplastid parasites in their hosts. To enable inhibitor studies of CRK9, we have characterized the CRK9 enzyme complex and discovered a new cyclin and a kinetoplastid-specific protein, both of which are essential for the formation of active CRK9. The tripartite nature of the CRK9 complex and sequence insertions that disrupt both kinase and cyclin domains suggest that CRK9 deviates structurally from human CDKs. Finally, by demonstrating that CRK9 ablation prevented trypanosomes from establishing lethal infections in mice, we validated CRK9 as a potential anti-parasitic drug target.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei.

          First-generation inducible expression vectors for Trypanosoma brucei utilized a single tetracycline-responsive promoter to drive expression of an experimental gene, in tandem with a drug-resistance marker gene to select for integration (Wirtz E, Clayton CE. Science 1995; 268:1179-1183). Because drug resistance and experimental gene expression both depended upon the activity of the regulated promoter, this approach could not be used for inducible expression of toxic products. We have now developed a dual-promoter approach, for expressing highly toxic products and generating conditional gene knock-outs, using back-to-back constitutive T7 and tetracycline-responsive PARP promoters to drive expression of the selectable marker and test gene, respectively. Transformants are readily obtained with these vectors in the absence of tetracycline, in bloodstream or procyclic T. brucei cell lines co-expressing T7 RNA polymerase and Tet repressor, and consistently show tetracycline-responsive expression through a 10(3)-10(4)-fold range. Uninduced background expression of a luciferase reporter averages no more than one molecule per cell, enabling dominant-negative approaches relying upon inducible expression of toxic products. This tight regulation also permits the production of functional gene knock-outs through regulated expression of an experimental gene in a null-mutant background.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome.

            African trypanosomes are major pathogens of humans and livestock and represent a model for studies of unusual protozoal biology. We describe a high-throughput phenotyping approach termed RNA interference (RNAi) target sequencing, or RIT-seq that, using Illumina sequencing, maps fitness-costs associated with RNAi. We scored the abundance of >90,000 integrated RNAi targets recovered from trypanosome libraries before and after induction of RNAi. Data are presented for 7435 protein coding sequences, >99% of a non-redundant set in the Trypanosoma brucei genome. Analysis of bloodstream and insect life-cycle stages and differentiated libraries revealed genome-scale knockdown profiles of growth and development, linking thousands of previously uncharacterized and "hypothetical" genes to essential functions. Genes underlying prominent features of trypanosome biology are highlighted, including the constitutive emphasis on post-transcriptional gene expression control, the importance of flagellar motility and glycolysis in the bloodstream, and of carboxylic acid metabolism and phosphorylation during differentiation from the bloodstream to the insect stage. The current data set also provides much needed genetic validation to identify new drug targets. RIT-seq represents a versatile new tool for genome-scale functional analyses and for the exploitation of genome sequence data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts.

              The widely prevailing view that the cyclin-dependent kinase inhibitors (CKIs) are solely negative regulators of cyclin-dependent kinases (CDKs) is challenged here by observations that normal up-regulation of cyclin D- CDK4 in mitogen-stimulated fibroblasts depends redundantly upon p21(Cip1) and p27(Kip1). Primary mouse embryonic fibroblasts that lack genes encoding both p21 and p27 fail to assemble detectable amounts of cyclin D-CDK complexes, express cyclin D proteins at much reduced levels, and are unable to efficiently direct cyclin D proteins to the cell nucleus. Restoration of CKI function reverses all three defects and thereby restores cyclin D activity to normal physiological levels. In the absence of both CKIs, the severe reduction in cyclin D-dependent kinase activity was well tolerated and had no overt effects on the cell cycle.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                8 March 2016
                March 2016
                : 12
                : 3
                : e1005498
                Affiliations
                [001]Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
                University of California, Los Angeles, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AG NB DLA. Performed the experiments: NB SHP DLA JKK. Analyzed the data: NB SHP DLA AG. Contributed reagents/materials/analysis tools: NB SHP DLA JKK. Wrote the paper: NB AG.

                [¤a]

                Current address: Department of Biochemistry & Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania, United States of America

                [¤b]

                Current address: Department of Biochemistry and Chemical Technology, Institute of Chemistry, University of São Paulo State, Araraquara, São Paulo, Brazil

                Article
                PPATHOGENS-D-15-02669
                10.1371/journal.ppat.1005498
                4783070
                26954683
                5cf0b23a-bf63-48e9-9287-5d5e3318cd8a
                © 2016 Badjatia et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 November 2015
                : 18 February 2016
                Page count
                Figures: 7, Tables: 1, Pages: 27
                Funding
                This work was supported by grants R01 AI073300 and R21 AI109447 to AG from the National Institute of Allergy and Infectious Diseases (NIAID) of the U.S. National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Cycle and Cell Division
                Cyclins
                Biology and Life Sciences
                Microbiology
                Protozoology
                Kinetoplastids
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Alignment
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Alignment
                Biology and life sciences
                Genetics
                Gene expression
                RNA processing
                RNA splicing
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA processing
                RNA splicing
                Biology and Life Sciences
                Organisms
                Protozoans
                Parasitic Protozoans
                Trypanosoma
                Trypanosoma Brucei Gambiense
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Cycle and Cell Division
                Biology and Life Sciences
                Biochemistry
                Proteins
                Post-Translational Modification
                Phosphorylation
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Motif Analysis
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Motif Analysis
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article