Blog
About

68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zic2 regulates the expression of Sert to modulate eye-specific refinement at the visual targets

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Zic2 regulates the expression of Sert to modulate eye-specific refinement at the visual targets

          This neurodevelopmental paper reports on the transcription factor Zic2 as critical regulator of visual target refinement. Establishing that Zic2 acts through the serotonin transporter SERT provides insight into a critical element of visual circuitry.

          Abstract

          The development of the nervous system is a time-ordered and multi-stepped process that requires neural specification, axonal navigation and arbor refinement at the target tissues. Previous studies have demonstrated that the transcription factor Zic2 is necessary and sufficient for the specification of retinal ganglion cells (RGCs) that project ipsilaterally at the optic chiasm midline. Here, we report that, in addition, Zic2 controls the refinement of eye-specific inputs in the visual targets by regulating directly the expression of the serotonin transporter (Sert), which is involved in the modulation of activity-dependent mechanisms during the wiring of sensory circuits. In agreement with these findings, RGCs that express Zic2 ectopically show defects in axonal refinement at the visual targets and respond to pharmacological blockage of Sert, whereas Zic2-negative contralateral RGCs do not. These results link, at the molecular level, early events in neural differentiation with late activity-dependent processes and propose a mechanism for the establishment of eye-specific domains at the visual targets.

          Related collections

          Most cited references 61

          • Record: found
          • Abstract: found
          • Article: not found

          The developmental role of serotonin: news from mouse molecular genetics.

          New genetic models that target the serotonin system show that transient alterations in serotonin homeostasis cause permanent changes to adult behaviour and modify the fine wiring of brain connections. These findings have revived a long-standing interest in the developmental role of serotonin. Molecular genetic approaches are now showing us that different serotonin receptors, acting at different developmental stages, modulate different developmental processes such as neurogenesis, apoptosis, axon branching and dendritogenesis. Our understanding of the specification of the serotonergic phenotype is improving. In addition, studies have revealed that serotonergic traits are dissociable, as there are populations of neurons that contain serotonin but do not synthesize it.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes.

            We have developed a simple non-radioactive in situ hybridization procedure for tissue sections and cultured cells using digoxigenin-labelled cRNA probes. This protocol can be applied for the detection of various transcripts present at a wide range of expression levels in the central nervous system. Cerebellar hybridization signals for transcripts estimated to be expressed at high (MBP, myelin basic protein), moderate (GluR1, subunit of AMPA/kainate sensitive glutamate receptors) and low (inositol polyphosphate-5-phosphatase) levels of abundance are demonstrated as examples. The sensitivity and cellular resolution were significantly improved by avoiding any ethanol treatment commonly used in other procedures. The localization of a labelled cell with respect to its environment is shown to be more easily assessed by counterstaining of the tissue with the nuclear dye Hoechst 33258. The present protocol can be combined with immunocytochemistry as demonstrated for glial fibrillary acidic protein (GFAP). All steps of the procedure, including preparation and labelling of the cRNA probes, pretreatment of tissue, hybridization and visualization of the labelled transcripts, are described in detail.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms underlying development of visual maps and receptive fields.

              Patterns of synaptic connections in the visual system are remarkably precise. These connections dictate the receptive field properties of individual visual neurons and ultimately determine the quality of visual perception. Spontaneous neural activity is necessary for the development of various receptive field properties and visual feature maps. In recent years, attention has shifted to understanding the mechanisms by which spontaneous activity in the developing retina, lateral geniculate nucleus, and visual cortex instruct the axonal and dendritic refinements that give rise to orderly connections in the visual system. Axon guidance cues and a growing list of other molecules, including immune system factors, have also recently been implicated in visual circuit wiring. A major goal now is to determine how these molecules cooperate with spontaneous and visually evoked activity to give rise to the circuits underlying precise receptive field tuning and orderly visual maps.
                Bookmark

                Author and article information

                Journal
                EMBO J
                The EMBO Journal
                Nature Publishing Group
                0261-4189
                1460-2075
                15 September 2010
                30 July 2010
                30 July 2010
                : 29
                : 18
                : 3170-3183
                Affiliations
                [1 ]simpleInstituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernandez , Alicante, Spain
                Author notes
                [a ]Department of Developmental Neurobiology, Instituto de Neurociencias de Alicante (CSIC-UMH), Avd Ramón y Cajal s/n, Alicante 03550, Spain. Tel.: +34 965 919231; Fax: +34 965 919200; E-mail: e.herrera@ 123456umh.es
                Article
                emboj2010172
                10.1038/emboj.2010.172
                2944059
                20676059
                Copyright © 2010, European Molecular Biology Organization

                This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.

                Categories
                Article

                Molecular biology

                zic2, visual system, axon refinement, serotonin transporter

                Comments

                Comment on this article