36
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial resistance mechanisms and potential synthetic treatments

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the discovery of antibiotics by Sir Alexander Fleming they have been used throughout medicine and play a vital role in combating microorganisms. However, with their vast use, development of resistance has become more prevalent and their use is currently under threat. Antibiotic resistance poses a global threat to human and animal health, with many bacterial species having developed some form of resistance and in some cases within a year of first exposure to antimicrobial agents. This review aims to examine some of the mechanisms behind resistance. Additionally, re-engineering organisms, re-sensitizing bacteria to antibiotics and gene-editing techniques such as the clustered regularly interspaced short palindromic repeats-Cas9 system are providing novel approaches to combat bacterial resistance. To that extent, we have reviewed some of these novel and innovative technologies.

          Lay abstract

          In 1928, penicillin was discovered, changing the field of modern medicine as it provided an opportunity to treat microbial infections. Since then, microorganisms such as bacteria have evolved and now have the ability to resist a wide variety of agents that might otherwise prevent their growth. By 2050, it is estimated that around 10 million lives each year will be lost due to these bacteria. This article provides an insight into how bacteria resist antibiotics and potential new methods of treating these organisms.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Diverse and abundant antibiotic resistance genes in Chinese swine farms.

          Antibiotic resistance genes (ARGs) are emerging contaminants posing a potential worldwide human health risk. Intensive animal husbandry is believed to be a major contributor to the increased environmental burden of ARGs. Despite the volume of antibiotics used in China, little information is available regarding the corresponding ARGs associated with animal farms. We assessed type and concentrations of ARGs at three stages of manure processing to land disposal at three large-scale (10,000 animals per year) commercial swine farms in China. In-feed or therapeutic antibiotics used on these farms include all major classes of antibiotics except vancomycins. High-capacity quantitative PCR arrays detected 149 unique resistance genes among all of the farm samples, the top 63 ARGs being enriched 192-fold (median) up to 28,000-fold (maximum) compared with their respective antibiotic-free manure or soil controls. Antibiotics and heavy metals used as feed supplements were elevated in the manures, suggesting the potential for coselection of resistance traits. The potential for horizontal transfer of ARGs because of transposon-specific ARGs is implicated by the enrichment of transposases--the top six alleles being enriched 189-fold (median) up to 90,000-fold in manure--as well as the high correlation (r(2) = 0.96) between ARG and transposase abundance. In addition, abundance of ARGs correlated directly with antibiotic and metal concentrations, indicating their importance in selection of resistance genes. Diverse, abundant, and potentially mobile ARGs in farm samples suggest that unmonitored use of antibiotics and metals is causing the emergence and release of ARGs to the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of genes that are associated with DNA repeats in prokaryotes.

            Using in silico analysis we studied a novel family of repetitive DNA sequences that is present among both domains of the prokaryotes (Archaea and Bacteria), but absent from eukaryotes or viruses. This family is characterized by direct repeats, varying in size from 21 to 37 bp, interspaced by similarly sized non-repetitive sequences. To appreciate their characteri-stic structure, we will refer to this family as the clustered regularly interspaced short palindromic repeats (CRISPR). In most species with two or more CRISPR loci, these loci were flanked on one side by a common leader sequence of 300-500 b. The direct repeats and the leader sequences were conserved within a species, but dissimilar between species. The presence of multiple chromosomal CRISPR loci suggests that CRISPRs are mobile elements. Four CRISPR-associated (cas) genes were identified in CRISPR-containing prokaryotes that were absent from CRISPR-negative prokaryotes. The cas genes were invariably located adjacent to a CRISPR locus, indicating that the cas genes and CRISPR loci have a functional relationship. The cas3 gene showed motifs characteristic for helicases of the superfamily 2, and the cas4 gene showed motifs of the RecB family of exonucleases, suggesting that these genes are involved in DNA metabolism or gene expression. The spatial coherence of CRISPR and cas genes may stimulate new research on the genesis and biological role of these repeats and genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aminoglycoside modifying enzymes.

              Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different -OH or -NH₂ groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltransferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Future Sci OA
                Future Sci OA
                FSOA
                Future Science OA
                Future Science Ltd (London, UK )
                2056-5623
                April 2018
                05 February 2018
                : 4
                : 4
                : FSO290
                Affiliations
                [1 ]Department of Chemical Engineering, Centre for Biological Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
                [2 ]Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK
                Author notes
                *Author for correspondence: J.Ali@ 123456lboro.ac.uk
                Article
                10.4155/fsoa-2017-0109
                5905577
                29682325
                5d27963b-1063-443d-a058-4d8f815f8015
                © 2018 J Ali, QA Rafiq & E Ratcliffe

                This work is licensed under a Creative Commons Attribution 4.0 License

                History
                : 26 September 2017
                : 15 January 2018
                : 05 February 2018
                Categories
                Review

                antibiotics,antimicrobial resistance,infectious agents,molecular biology,re-sensitizing,resistance mechanisms

                Comments

                Comment on this article

                scite_

                Similar content366

                Cited by26

                Most referenced authors1,614