33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Energy and the u.s. Economy: a biophysical perspective.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A series of hypotheses is presented about the relation of national energy use to national economic activity (both time series and cross-sectional) which offer a different perspective from standard economics for the assessment of historical and current economic events. The analysis incorporates nearly 100 years of time series data and 3 years of cross-sectional data on 87 sectors of the United States economy. Gross national product, labor productivity, and price levels are all correlated closely with various aspects of energy use, and these correlations are improved when corrections are made for energy quality. A large portion of the apparent increase in U.S. energy efficiency has been due to our ability to expand the relative use of high-quality fuels such as petroleum and electricity, and also to relative shifts in fuel use between sectors of the economy. The concept of energy return on investment is introduced as a major driving force in our economy, and data are provided which show a marked decline in energy return on investment for all our principal fuels in recent decades. Future economic growth will depend largely on the net energy yield of alternative fuel sources, and some standard economic models may need to be modified to account for the biophysical constraints on human economic activity.

          Related collections

          Author and article information

          Journal
          Science
          Science (New York, N.Y.)
          American Association for the Advancement of Science (AAAS)
          0036-8075
          0036-8075
          Aug 31 1984
          : 225
          : 4665
          Article
          225/4665/890
          10.1126/science.225.4665.890
          17779848
          5d2c2c0b-39d0-4140-814e-59488f2922b9
          History

          Comments

          Comment on this article

          Related Documents Log