34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Transition from Proliferation to Differentiation in Colorectal Cancer Is Regulated by the Calcium Activated Chloride Channel A1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breaking the balance between proliferation and differentiation in animal cells can lead to cancer, but the mechanisms maintaining this balance remain largely undefined. The calcium activated chloride channel A1 (CLCA1) is a member of the calcium sensitive chloride conductance family of proteins and is expressed mainly in the colon, small intestine and appendix. We show that CLCA1 plays a functional role in differentiation and proliferation of Caco-2 cells and of intestinal tissue. Caco-2 cells spontaneously differentiate either in confluent culture or when treated with butyrate, a molecule present naturally in the diet. Here, we compared CLCA1 expressional levels between patients with and without colorectal cancer (CRC) and determined the functional role of CLCA1 in differentiation and proliferation of Caco-2 cells. We showed that: 1) CLCA1 and CLCA4 expression were down-regulated significantly in CRC patients; 2) CLCA1 expression was up-regulated in Caco-2 cells induced to differentiate by confluent culture or by treatment with sodium butyrate (NaBT); 3) Knockdown of CLCA1 with siRNA significantly inhibited cell differentiation and promoted cell proliferation in Caco-2 confluent cultures, and 4) In Caco-2 3D culture, suppression of CLCA1 significantly increased cell proliferation and compromised NaBT-induced inhibition of proliferation. In conclusion, CLCA1 may contribute to promoting spontaneous differentiation and reducing proliferation of Caco-2 cells and may be a target of NaBT-induced inhibition of proliferation and therefore a potential diagnostic marker for CRC prognosis.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Lessons from hereditary colorectal cancer.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells.

            The transactivation of TCF target genes induced by Wnt pathway mutations constitutes the primary transforming event in colorectal cancer (CRC). We show that disruption of beta-catenin/TCF-4 activity in CRC cells induces a rapid G1 arrest and blocks a genetic program that is physiologically active in the proliferative compartment of colon crypts. Coincidently, an intestinal differentiation program is induced. The TCF-4 target gene c-MYC plays a central role in this switch by direct repression of the p21(CIP1/WAF1) promoter. Following disruption of beta-catenin/TCF-4 activity, the decreased expression of c-MYC releases p21(CIP1/WAF1) transcription, which in turn mediates G1 arrest and differentiation. Thus, the beta-catenin/TCF-4 complex constitutes the master switch that controls proliferation versus differentiation in healthy and malignant intestinal epithelial cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon.

              Short-chain fatty acids, generated in colon by bacterial fermentation of dietary fiber, protect against colorectal cancer and inflammatory bowel disease. Among these bacterial metabolites, butyrate is biologically most relevant. GPR109A is a G-protein-coupled receptor for nicotinate but recognizes butyrate with low affinity. Millimolar concentrations of butyrate are needed to activate the receptor. Although concentrations of butyrate in colonic lumen are sufficient to activate the receptor maximally, there have been no reports on the expression/function of GPR109A in this tissue. Here we show that GPR109A is expressed in the lumen-facing apical membrane of colonic and intestinal epithelial cells and that the receptor recognizes butyrate as a ligand. The expression of GPR109A is silenced in colon cancer in humans, in a mouse model of intestinal/colon cancer, and in colon cancer cell lines. The tumor-associated silencing of GPR109A involves DNA methylation directly or indirectly. Reexpression of GPR109A in colon cancer cells induces apoptosis, but only in the presence of its ligands butyrate and nicotinate. Butyrate is an inhibitor of histone deacetylases, but apoptosis induced by activation of GPR109A with its ligands in colon cancer cells does not involve inhibition of histone deacetylation. The primary changes in this apoptotic process include down-regulation of Bcl-2, Bcl-xL, and cyclin D1 and up-regulation of death receptor pathway. In addition, GPR109A/butyrate suppresses nuclear factor-kappaB activation in normal and cancer colon cell lines as well as in normal mouse colon. These studies show that GPR109A mediates the tumor-suppressive effects of the bacterial fermentation product butyrate in colon.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                12 April 2013
                : 8
                : 4
                : e60861
                Affiliations
                [1 ]Department of General Surgery, The 309th Hospital of PLA, Beijing, China
                [2 ]School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
                Sapporo Medical University, Japan
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JP BY LC. Performed the experiments: LC JP BL. Analyzed the data: LC JP. Contributed reagents/materials/analysis tools: JP BY LC CDM. Wrote the paper: LC JP CDM.

                Article
                PONE-D-12-39805
                10.1371/journal.pone.0060861
                3625186
                23593331
                5d2de376-7fc3-4193-8da6-4fa2b3fbfae7
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 December 2012
                : 3 March 2013
                Page count
                Pages: 11
                Funding
                This work was funded by NHS Endowment Fund (12/50) to LC, JP and CDM, and Friends of Anchor to JP and CDM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Ion Channels
                Developmental Biology
                Cell Differentiation
                Medicine
                Diagnostic Medicine
                Pathology
                General Pathology
                Biomarkers
                Oncology
                Cancer Detection and Diagnosis
                Cancer Screening
                Cancers and Neoplasms
                Gastrointestinal Tumors
                Cancer Risk Factors

                Uncategorized
                Uncategorized

                Comments

                Comment on this article