8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion.

      European Journal of Pharmacology
      Animals, Brain Ischemia, drug therapy, physiopathology, Cyclooxygenase 2, metabolism, Hippocampus, drug effects, Inflammation, Injections, Intravenous, Lipid Peroxidation, Male, Mitogen-Activated Protein Kinases, NF-kappa B, Oxidative Stress, physiology, PPAR gamma, agonists, Rats, Rats, Wistar, Reperfusion Injury, Signal Transduction, Thiazolidinediones, pharmacology, therapeutic use

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Agonists of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) exert protective effects in several models of ischemia/reperfusion injury, but their role in stroke is less clear. The study investigates the effects of two PPAR-gamma agonists, rosiglitazone and pioglitazone, on oxidative stress and inflammatory response induced by ischemia/reperfusion in the rat hippocampus. Common carotid artery occlusion for 30 min followed by 1 h reperfusion resulted in a significant increase in the generation of reactive oxygen species, nitric oxide and the end products of lipid peroxidation as well as markedly reduced endogenous antioxidant glutathione levels and up-regulated superoxide dismutase activity. Western blot analysis showed that ischemia/reperfusion lead to an increase in cyclooxygenase-2 (COX-2) expression, as well activating p38 and p42/44 mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB). Pre-treatment with either rosiglitazone or pioglitazone significantly reduced oxidative stress, COX-2 protein expression and activation of MAPKs and NF-kappaB. Taken together, the results provide convincing evidence that PPAR-gamma agonists exert protective effects in a rat model of mild forebrain ischemia/reperfusion injury by inhibiting oxidative stress and excessive inflammatory response.

          Related collections

          Author and article information

          Comments

          Comment on this article