19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocyte death, as well as the following inflammatory and fibrogenic signaling cascades, is the key trigger of liver fibrosis. Here, we isolated hepatocytes from CCl 4-induced fibrotic liver and found that hepatocyte lincRNA-p21 significantly increased during liver fibrosis. The increase of hepatocyte lincRNA-p21 was associated with the loss of miR-30, which can inhibit TGF-β signaling by targeting KLF11. We revealed that lincRNA-p21 modulated miR-30 availability by acting as a competing endogenous RNA (ceRNA). The physiological significance of this interaction is highlighted by the feedback loop, in which lincRNA-p21 works as a downstream effector of the TGF-β signaling to strengthen TGF-β signaling and mediate its role in promoting liver fibrosis by interacting with miR-30. In vivo results showed that knockdown of hepatocyte lincRNA-p21 greatly reduced CCl 4-induced liver fibrosis and inflammation, whereas ectopic expression of miR-30 in hepatocyte exhibited the similar results. Mechanistic studies further revealed that inhibition of miR-30 impaired the effects of lincRNA-p21 on liver fibrosis. Additionally, lincRNA-p21 promoted hepatocyte apoptosis in vitro and in vivo, whereas the proliferation rate of hepatocyte was suppressed by lincRNA-p21. The pleiotropic roles of hepatocyte lincRNA-p21 suggest that it may represent an unknown paradigm in liver fibrosis and serve as a potential target for therapy.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Liver fibrosis.

          Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolving challenges in hepatic fibrosis.

            Continued elucidation of the mechanisms of hepatic fibrosis has yielded a comprehensive and nuanced portrait of fibrosis progression and regression. The paradigm of hepatic stellate cell (HSC) activation remains the foundation for defining events in hepatic fibrosis and has been complemented by progress in a number of new areas. Cellular sources of extracellular matrix beyond HSCs have been identified. In addition, the role of chemokine, adipokine, neuroendocrine, angiogenic and NAPDH oxidase signaling in the pathogenesis of hepatic fibrosis has been uncovered, as has the contribution of extracellular matrix stiffness to fibrogenesis. There is also increased awareness of the contribution of innate immunity and greater understanding of the complexity of gene regulation in HSCs and myofibroblasts. Finally, both apoptosis and senescence have been recognized as orchestrated programs that eliminate fibrogenic cells during resolution of liver fibrosis. Ironically, the progress that has been made has highlighted the growing disparity between advances in the experimental setting and their translation into new diagnostic tools and treatments. As a result, focus is shifting towards overcoming key translational challenges in order to accelerate the development of new therapies for patients with chronic liver disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome.

              Recent large-scale analyses of mainly full-length cDNA libraries generated from a variety of mouse tissues indicated that almost half of all representative cloned sequences did not contain an apparent protein-coding sequence, and were putatively derived from non-protein-coding RNA (ncRNA) genes. However, many of these clones were singletons and the majority were unspliced, raising the possibility that they may be derived from genomic DNA or unprocessed pre-mRNA contamination during library construction, or alternatively represent nonspecific "transcriptional noise." Here we show, using reverse transcriptase-dependent PCR, microarray, and Northern blot analyses, that many of these clones were derived from genuine transcripts of unknown function whose expression appears to be regulated. The ncRNA transcripts have larger exons and fewer introns than protein-coding transcripts. Analysis of the genomic landscape around these sequences indicates that some cDNA clones were produced not from terminal poly(A) tracts but internal priming sites within longer transcripts, only a minority of which is encompassed by known genes. A significant proportion of these transcripts exhibit tissue-specific expression patterns, as well as dynamic changes in their expression in macrophages following lipopolysaccharide stimulation. Taken together, the data provide strong support for the conclusion that ncRNAs are an important, regulated component of the mammalian transcriptome.
                Bookmark

                Author and article information

                Contributors
                zangyh@nju.edu.cn
                jfzhang@nju.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 June 2017
                7 June 2017
                2017
                : 7
                : 2957
                Affiliations
                [1 ]ISNI 0000 0001 2314 964X, GRID grid.41156.37, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, , Nanjing University, ; Nanjing, 210093 P.R. China
                [2 ]Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, 210093 P.R. China
                Author information
                http://orcid.org/0000-0002-2112-1835
                Article
                3175
                10.1038/s41598-017-03175-0
                5462818
                28592847
                5d347604-1e90-4dd0-8ebc-b45baef3a5f5
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 February 2017
                : 24 April 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article