26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Erythropoietin (EPO), originally identified for its critical hormonal role in promoting erythrocyte survival and differentiation, is a member of the large and diverse cytokine superfamily. Recent studies have identified multiple paracrineautocrine functions of EPO that coordinate local responses to injury by maintaining vascular autoregulation and attenuating both primary (apoptotic) and secondary (inflammatory) causes of cell death. Experimental evidence also supports a role for EPO in repair and regeneration after brain and spinal cord injury, including the recruitment of stem cells into the region of damage. Tissue expression of the EPO receptor is widespread, especially during development, and includes the heart. However, it is currently unknown as to whether EPO plays a physiological function in adult myocardial tissue. We have assessed the potential protective role of EPO in vitro with adult rat cardiomyocytes, and in vivo in a rat model of myocardial infarction with reperfusion. The results show that EPO markedly prevents the apoptosis of cultured adult rat myocardiocytes subjected to 28 h of hypoxia (approximately 3% normal oxygen). Additional studies employing a rat model of coronary ischemia-reperfusion showed that the administration of recombinant human EPO (5,000 units/kg of body weight; i.p. daily for 7 days) reduces cardiomyocyte loss by approximately 50%, an extent sufficient to normalize hemodynamic function within 1 week after reperfusion. These observations not only suggest a potential therapeutic role for recombinant human EPO in the treatment of myocardial ischemia and infarction by preventing apoptosis and attenuating postinfarct deterioration in hemodynamic function, but also predict that EPO is likely a tissue-protective cytokine in other organs as well.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Reperfusion injury induces apoptosis in rabbit cardiomyocytes.

          The most effective way to limit myocardial ischemic necrosis is reperfusion, but reperfusion itself may result in tissue injury, which has been difficult to separate from ischemic injury. This report identifies elements of apoptosis (programmed cell death) in myocytes as a response to reperfusion but not ischemia. The hallmark of apoptosis, nucleosomal ladders of DNA fragments (approximately 200 base pairs), was detected in ischemic/reperfused rabbit myocardial tissue but not in normal or ischemic-only rabbit hearts. Granulocytopenia did not prevent nucleosomal DNA cleavage. In situ nick end labeling demonstrated DNA fragmentation predominantly in myocytes. The pattern of nuclear chromatin condensation was distinctly different in reperfused than in persistently ischemic tissue by transmission electron microscopy. Apoptosis may be a specific feature of reperfusion injury in cardiac myocytes, leading to late cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades.

            Erythropoietin, a kidney cytokine regulating haematopoiesis (the production of blood cells), is also produced in the brain after oxidative or nitrosative stress. The transcription factor hypoxia-inducible factor-1 (HIF-1) upregulates EPO following hypoxic stimuli. Here we show that preconditioning with EPO protects neurons in models of ischaemic and degenerative damage due to excitotoxins and consequent generation of free radicals, including nitric oxide (NO). Activation of neuronal EPO receptors (EPORs) prevents apoptosis induced by NMDA (N-methyl-d-aspartate) or NO by triggering cross-talk between the signalling pathways of Janus kinase-2 (Jak2) and nuclear factor-kappaB (NF-kappaB). We show that EPOR-mediated activation of Jak2 leads to phosphorylation of the inhibitor of NF-kappaB (IkappaB), subsequent nuclear translocation of the transcription factor NF-kappaB, and NF-kappaB-dependent transcription of neuroprotective genes. Transfection of cerebrocortical neurons with a dominant interfering form of Jak2 or an IkappaBalpha super-repressor blocks EPO-mediated prevention of neuronal apoptosis. Thus neuronal EPORs activate a neuroprotective pathway that is distinct from previously well characterized Jak and NF-kappaB functions. Moreover, this EPO effect may underlie neuroprotection mediated by hypoxic-ischaemic preconditioning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo.

              The serine-threonine kinase Akt is activated by several ligand-receptor systems previously shown to be cardioprotective. Akt activation reduces cardiomyocyte apoptosis in models of transient ischemia. Its role in cardiac dysfunction or infarction, however, remains unclear. We examined the effects of a constitutively active Akt mutant (myr-Akt) in a rat model of cardiac ischemia-reperfusion injury. In vivo gene transfer of myr-Akt reduced infarct size by 64% and the number of apoptotic cells by 84% (P<0.005 for each). Ischemia-reperfusion injury decreased regional cardiac wall thickening as well as the maximal rate of left ventricular pressure rise and fall (+dP/dt and -dP/dt). Akt activation restored regional wall thickening and +dP/dt and -dP/dt to levels seen in sham-operated rats. To better understand this benefit, we examined the effects of myr-Akt on hypoxic cardiomyocyte dysfunction in vitro. myr-Akt prevented hypoxia-induced abnormalities in cardiomyocyte calcium transients and shortening. Akt activation also enhanced sarcolemmal expression of Glut-4 in vivo and increased glucose uptake in vitro to the level seen with insulin treatment. Akt activation exerts a powerful cardioprotective effect after transient ischemia that probably reflects its ability to both inhibit cardiomyocyte death and improve function of surviving cardiomyocytes. Akt may represent an important nodal target for therapy in ischemic and other heart disease.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 15 2003
                March 27 2003
                April 15 2003
                : 100
                : 8
                : 4802-4806
                Article
                10.1073/pnas.0630444100
                153636
                12663857
                5d401e79-fd36-4994-9064-51d353224ffb
                © 2003
                History

                Comments

                Comment on this article