67
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Signal Transduction in Matrix Contraction and the Migration of Vascular Smooth Muscle Cells in Three-Dimensional Matrix

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The interaction of vascular smooth muscle cells (SMCs) and extracellular matrix plays important roles in vascular remodeling. We investigated the signaling pathways involved in SMC-induced matrix contraction and SMC migration in three-dimensional (3D) collagen matrix. Matrix contraction is inhibited by the disruption of actin filaments but not microtubules. Therefore, we investigated the roles of signaling pathways related to actin filaments in matrix contraction. SMC-induced matrix contraction was markedly blocked (–80%) by inhibiting the Rho-p160ROCK pathway and myosin light chain kinase, and was decreased to a lesser extent (30–40%) by a negative mutant of Rac and inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase) or p38 mitogen-activated protein kinase (MAPK), but it was not affected by the inhibition of Ras and Cdc42-Wiskott-Aldrich syndrome protein (WASP) pathways. Inhibition of extracellular-signal-regulated kinase (ERK) decreased SMC-induced matrix contraction by only 15%. The migration speed and persistence of SMCs in the 3D matrix were decreased by the inhibition of p160ROCK, PI 3-kinase, p38 MAPK or WASP to different extents, and p160ROCK inhibitor had the strongest inhibitory effect. Our results suggest that the SMC-induced matrix contraction and the migration of SMCs in 3D matrix share some signaling pathways leading to force generation at cell-matrix adhesions and that various signaling pathways have different relative importance in the regulations of these processes in SMCs.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly.

          Although small GTP-binding proteins of the Rho family have been implicated in signaling to the actin cytoskeleton, the exact nature of the linkage has remained obscure. We describe a novel mechanism that links one Rho family member, Cdc42, to actin polymerization. N-WASP, a ubiquitously expressed Cdc42-interacting protein, is required for Cdc42-stimulated actin polymerization in Xenopus egg extracts. The C terminus of N-WASP binds to the Arp2/3 complex and dramatically stimulates its ability to nucleate actin polymerization. Although full-length N-WASP is less effective, its activity can be greatly enhanced by Cdc42 and phosphatidylinositol (4,5) bisphosphate. Therefore, N-WASP and the Arp2/3 complex comprise a core mechanism that directly connects signal transduction pathways to the stimulation of actin polymerization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rho GTPases Control Polarity, Protrusion, and Adhesion during Cell Movement

            Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organization and regulation of mitogen-activated protein kinase signaling pathways.

              Mitogen-activated protein kinases (MAPKs) are components of a three kinase regulatory cascade. There are multiple members of each component family of kinases in the MAPK module. Specificity of regulation is achieved by organization of MAPK modules, in part, by use of scaffolding and anchoring proteins. Scaffold proteins bring together specific kinases for selective activation, sequestration and localization of signaling complexes. The recent elucidation of scaffolding mechanisms for MAPK pathways has begun to solve the puzzle of how specificity in signaling can be achieved for each MAPK pathway in different cell types and in response to different stimuli. As new MAPK members are defined, determining their organization in kinase modules will be critical in understanding their select role in cellular regulation.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2003
                August 2003
                26 September 2003
                : 40
                : 4
                : 378-388
                Affiliations
                aDepartment of Bioengineering, University of California, Berkeley, Calif., and bDepartment of Bioengineering and Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, Calif., USA
                Article
                72702 J Vasc Res 2003;40:378–388
                10.1159/000072702
                12891007
                5d4feb84-e087-4162-a8e4-a3e85ceda6cb
                © 2003 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 24 January 2003
                : 23 April 2003
                Page count
                Figures: 8, References: 66, Pages: 11
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Signal transduction,Rho,Three-dimensional matrix,Extracellular matrix,Force generation,Smooth muscle cells,Migration

                Comments

                Comment on this article