18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulation of the Inflammatory Response and Bone Healing

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The optimal treatment for complex fractures and large bone defects is an important unsolved issue in orthopedics and related specialties. Approximately 5–10% of fractures fail to heal and develop non-unions. Bone healing can be characterized by three partially overlapping phases: the inflammatory phase, the repair phase, and the remodeling phase. Eventual healing is highly dependent on the initial inflammatory phase, which is affected by both the local and systemic responses to the injurious stimulus. Furthermore, immune cells and mesenchymal stromal cells (MSCs) participate in critical inter-cellular communication or crosstalk to modulate bone healing. Deficiencies in this inter-cellular exchange, inhibition of the natural processes of acute inflammation, and its resolution, or chronic inflammation due to a persistent adverse stimulus can lead to impaired fracture healing. Thus, an initial and optimal transient stage of acute inflammation is one of the key factors for successful, robust bone healing. Recent studies demonstrated the therapeutic potential of immunomodulation for bone healing by the preconditioning of MSCs to empower their immunosuppressive properties. Preconditioned MSCs (also known as “primed/ licensed/ activated” MSCs) are cultured first with pro-inflammatory cytokines (e.g., TNFα and IL17A) or exposed to hypoxic conditions to mimic the inflammatory environment prior to their intended application. Another approach of immunomodulation for bone healing is the resolution of inflammation with anti-inflammatory cytokines such as IL4, IL10, and IL13. In this review, we summarize the principles of inflammation and bone healing and provide an update on cellular interactions and immunomodulation for optimal bone healing.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage plasticity, polarization, and function in health and disease.

          Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology of fracture healing.

            The biology of fracture healing is a complex biological process that follows specific regenerative patterns and involves changes in the expression of several thousand genes. Although there is still much to be learned to fully comprehend the pathways of bone regeneration, the over-all pathways of both the anatomical and biochemical events have been thoroughly investigated. These efforts have provided a general understanding of how fracture healing occurs. Following the initial trauma, bone heals by either direct intramembranous or indirect fracture healing, which consists of both intramembranous and endochondral bone formation. The most common pathway is indirect healing, since direct bone healing requires an anatomical reduction and rigidly stable conditions, commonly only obtained by open reduction and internal fixation. However, when such conditions are achieved, the direct healing cascade allows the bone structure to immediately regenerate anatomical lamellar bone and the Haversian systems without any remodelling steps necessary. In all other non-stable conditions, bone healing follows a specific biological pathway. It involves an acute inflammatory response including the production and release of several important molecules, and the recruitment of mesenchymal stem cells in order to generate a primary cartilaginous callus. This primary callus later undergoes revascularisation and calcification, and is finally remodelled to fully restore a normal bone structure. In this article we summarise the basic biology of fracture healing. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fracture healing under healthy and inflammatory conditions.

              Optimal fracture treatment requires knowledge of the complex physiological process of bone healing. The course of bone healing is mainly influenced by fracture fixation stability (biomechanics) and the blood supply to the healing site (revascularization after trauma). The repair process proceeds via a characteristic sequence of events, described as the inflammatory, repair and remodeling phases. An inflammatory reaction involving immune cells and molecular factors is activated immediately in response to tissue damage and is thought to initiate the repair cascade. Immune cells also have a major role in the repair phase, exhibiting important crosstalk with bone cells. After bony bridging of the fragments, a slow remodeling process eventually leads to the reconstitution of the original bone structure. Systemic inflammation, as observed in patients with rheumatoid arthritis, diabetes mellitus, multiple trauma or sepsis, can increase fracture healing time and the rate of complications, including non-unions. In addition, evidence suggests that insufficient biomechanical conditions within the fracture zone can influence early local inflammation and impair bone healing. In this Review, we discuss the main factors that influence fracture healing, with particular emphasis on the role of inflammation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                11 June 2020
                2020
                : 11
                : 386
                Affiliations
                [1] 1Department of Orthopaedic Surgery, Stanford University , Stanford, CA, United States
                [2] 2Department of Bioengineering, Stanford University , Stanford, CA, United States
                Author notes

                Edited by: Deborah Veis, Washington University School of Medicine in St. Louis, United States

                Reviewed by: Michaela Tencerova, Institute of Physiology (ASCR), Czechia; Paula H. Stern, Northwestern University, United States

                *Correspondence: Stuart B. Goodman goodbone@ 123456stanford.edu

                This article was submitted to Bone Research, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2020.00386
                7325942
                32655495
                5d5c93cc-49f2-4d7e-bd7d-e422e819da5a
                Copyright © 2020 Maruyama, Rhee, Utsunomiya, Zhang, Ueno, Yao and Goodman.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 March 2020
                : 14 May 2020
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 126, Pages: 14, Words: 10455
                Funding
                Funded by: Foundation for the National Institutes of Health 10.13039/100000009
                Award ID: R01AR055650
                Award ID: R01AR063717
                Award ID: R01AR073145
                Award ID: RO1AR72613
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                bone healing,immunomodulation,inflammation,mesenchymal stromal cell,preconditioning,pro-inflammatory cytokines,anti-inflammatory cytokines

                Comments

                Comment on this article