Blog
About

17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The 2010 Amazon drought.

      Science (New York, N.Y.)

      Trees, Biomass, South America, Seasons, Ecosystem, Droughts, Carbon, Brazil

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In 2010, dry-season rainfall was low across Amazonia, with apparent similarities to the major 2005 drought. We analyzed a decade of satellite-derived rainfall data to compare both events. Standardized anomalies of dry-season rainfall showed that 57% of Amazonia had low rainfall in 2010 as compared with 37% in 2005 (≤-1 standard deviation from long-term mean). By using relationships between drying and forest biomass responses measured for 2005, we predict the impact of the 2010 drought as 2.2 × 10(15) grams of carbon [95% confidence intervals (CIs) are 1.2 and 3.4], largely longer-term committed emissions from drought-induced tree deaths, compared with 1.6 × 10(15) grams of carbon (CIs 0.8 and 2.6) for the 2005 event.

          Related collections

          Most cited references 7

          • Record: found
          • Abstract: found
          • Article: not found

          Drought sensitivity of the Amazon rainforest.

          Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change, deforestation, and the fate of the Amazon.

            The forest biome of Amazonia is one of Earth's greatest biological treasures and a major component of the Earth system. This century, it faces the dual threats of deforestation and stress from climate change. Here, we summarize some of the latest findings and thinking on these threats, explore the consequences for the forest ecosystem and its human residents, and outline options for the future of Amazonia. We also discuss the implications of new proposals to finance preservation of Amazonian forests.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Drought of Amazonia in 2005

                Bookmark

                Author and article information

                Journal
                10.1126/science.1200807
                21292971

                Chemistry

                Trees, Biomass, South America, Seasons, Ecosystem, Droughts, Carbon, Brazil

                Comments

                Comment on this article