134
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19

      editorial
      , M.D., M.P.H., , M.D., M.P.H., , M.D.
      The New England Journal of Medicine
      Massachusetts Medical Society
      Keyword part (code): 15Keyword part (keyword): Geriatrics/AgingKeyword part (code): 15_1Keyword part (keyword): Geriatrics/Aging General , 15, Geriatrics/Aging, Keyword part (code): 15_1Keyword part (keyword): Geriatrics/Aging General, 15_1, Geriatrics/Aging General, Keyword part (code): 18Keyword part (keyword): Infectious DiseaseKeyword part (code): 18_1Keyword part (keyword): Infectious Disease GeneralKeyword part (code): 18_6Keyword part (keyword): Viral InfectionsKeyword part (code): 18_9Keyword part (keyword): Global HealthKeyword part (code): 18_10Keyword part (keyword): DiagnosticsKeyword part (code): 18_11Keyword part (keyword): Influenza , 18, Infectious Disease, Keyword part (code): 18_1Keyword part (keyword): Infectious Disease GeneralKeyword part (code): 18_6Keyword part (keyword): Viral InfectionsKeyword part (code): 18_9Keyword part (keyword): Global HealthKeyword part (code): 18_10Keyword part (keyword): DiagnosticsKeyword part (code): 18_11Keyword part (keyword): Influenza , 18_1, Infectious Disease General, 18_6, Viral Infections, 18_9, Global Health, 18_10, Diagnostics, 18_11, Influenza

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traditional infection-control and public health strategies rely heavily on early detection of disease to contain spread. When Covid-19 burst onto the global scene, public health officials initially deployed interventions that were used to control severe acute respiratory syndrome (SARS) in 2003, including symptom-based case detection and subsequent testing to guide isolation and quarantine. This initial approach was justified by the many similarities between SARS-CoV-1 and SARS-CoV-2, including high genetic relatedness, transmission primarily through respiratory droplets, and the frequency of lower respiratory symptoms (fever, cough, and shortness of breath) with both infections developing a median of 5 days after exposure. However, despite the deployment of similar control interventions, the trajectories of the two epidemics have veered in dramatically different directions. Within 8 months, SARS was controlled after SARS-CoV-1 had infected approximately 8100 persons in limited geographic areas. Within 5 months, SARS-CoV-2 has infected more than 2.6 million people and continues to spread rapidly around the world. What explains these differences in transmission and spread? A key factor in the transmissibility of Covid-19 is the high level of SARS-CoV-2 shedding in the upper respiratory tract, 1 even among presymptomatic patients, which distinguishes it from SARS-CoV-1, where replication occurs mainly in the lower respiratory tract. 2 Viral loads with SARS-CoV-1, which are associated with symptom onset, peak a median of 5 days later than viral loads with SARS-CoV-2, which makes symptom-based detection of infection more effective in the case of SARS CoV-1. 3 With influenza, persons with asymptomatic disease generally have lower quantitative viral loads in secretions from the upper respiratory tract than from the lower respiratory tract and a shorter duration of viral shedding than persons with symptoms, 4 which decreases the risk of transmission from paucisymptomatic persons (i.e., those with few symptoms). Arons et al. now report in the Journal an outbreak of Covid-19 in a skilled nursing facility in Washington State where a health care provider who was working while symptomatic tested positive for infection with SARS-CoV-2 on March 1, 2020. 5 Residents of the facility were then offered two facility-wide point-prevalence screenings for SARS-CoV-2 by real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) of nasopharyngeal swabs on March 13 and March 19–20, along with collection of information on symptoms the residents recalled having had over the preceding 14 days. Symptoms were classified into typical (fever, cough, and shortness of breath), atypical, and none. Among 76 residents in the point-prevalence surveys, 48 (63%) had positive rRT-PCR results, with 27 (56%) essentially asymptomatic, although symptoms subsequently developed in 24 of these residents (within a median of 4 days) and they were reclassified as presymptomatic. Quantitative SARS-CoV-2 viral loads were similarly high in the four symptom groups (residents with typical symptoms, those with atypical symptoms, those who were presymptomatic, and those who remained asymptomatic). It is notable that 17 of 24 specimens (71%) from presymptomatic persons had viable virus by culture 1 to 6 days before the development of symptoms. Finally, the mortality from Covid-19 in this facility was high; of 57 residents who tested positive, 15 (26%) died. An important finding of this report is that more than half the residents of this skilled nursing facility (27 of 48) who had positive tests were asymptomatic at testing. Moreover, live coronavirus clearly sheds at high concentrations from the nasal cavity even before symptom development. Although the investigators were not able to retrospectively elucidate specific person-to-person transmission events and although symptom ascertainment may be unreliable in a group in which more than half the residents had cognitive impairment, these results indicate that asymptomatic persons are playing a major role in the transmission of SARS-CoV-2. Symptom-based screening alone failed to detect a high proportion of infectious cases and was not enough to control transmission in this setting. The high mortality (>25%) argues that we need to change our current approach for skilled nursing facilities in order to protect vulnerable, enclosed populations until other preventive measures, such as a vaccine or chemoprophylaxis, are available. A new approach that expands Covid-19 testing to include asymptomatic persons residing or working in skilled nursing facilities needs to be implemented now. Despite “lockdowns” in these facilities, coronavirus outbreaks continue to spread, with 1 in 10 nursing homes in the United States (>1300 skilled nursing facilities) now reporting cases, with the likelihood of thousands of deaths. 6 Mass testing of the residents in skilled nursing facilities will allow appropriate isolation of infected residents so that they can be cared for and quarantine of exposed residents to minimize the risk of spread. Mass testing in these facilities could also allow cohorting 7 and some resumption of group activities in a nonoutbreak setting. Routine rRT-PCR testing in addition to symptomatic screening of new residents before entry, conservative guidelines for discontinuation of isolation, 7 and periodic retesting of long-term residents, as well as both periodic rRT-PCR screening and surgical masking of all staff, are important concomitant measures. There are approximately 1.3 million Americans currently residing in nursing homes. 8 Although this recommendation for mass testing in skilled nursing facilities could be initially rolled out in geographic areas with high rates of community Covid-19 transmission, an argument can be made to extend this recommendation to all U.S.-based skilled nursing facilities now because case ascertainment is uneven and incomplete and because of the devastating consequences of outbreaks. Immediately enforceable alternatives to mass testing in skilled nursing facilities are few. The public health director of Los Angeles has recommended that families remove their loved ones from nursing homes, 9 a measure that is not feasible for many families. Asymptomatic transmission of SARS-CoV-2 is the Achilles’ heel of Covid-19 pandemic control through the public health strategies we have currently deployed. Symptom-based screening has utility, but epidemiologic evaluations of Covid-19 outbreaks within skilled nursing facilities such as the one described by Arons et al. strongly demonstrate that our current approaches are inadequate. This recommendation for SARS-CoV-2 testing of asymptomatic persons in skilled nursing facilities should most likely be expanded to other congregate living situations, such as prisons and jails (where outbreaks in the United States, whose incarceration rate is much higher than rates in other countries, are increasing), enclosed mental health facilities, and homeless shelters, and to hospitalized inpatients. Current U.S. testing capability must increase immediately for this strategy to be implemented. Ultimately, the rapid spread of Covid-19 across the United States and the globe, the clear evidence of SARS-CoV-2 transmission from asymptomatic persons, 5 and the eventual need to relax current social distancing practices argue for broadened SARS-CoV-2 testing to include asymptomatic persons in prioritized settings. These factors also support the case for the general public to use face masks 10 when in crowded outdoor or indoor spaces. This unprecedented pandemic calls for unprecedented measures to achieve its ultimate defeat.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Virological assessment of hospitalized patients with COVID-2019

          Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study

            Summary Background Coronavirus disease 2019 (COVID-19) causes severe community and nosocomial outbreaks. Comprehensive data for serial respiratory viral load and serum antibody responses from patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not yet available. Nasopharyngeal and throat swabs are usually obtained for serial viral load monitoring of respiratory infections but gathering these specimens can cause discomfort for patients and put health-care workers at risk. We aimed to ascertain the serial respiratory viral load of SARS-CoV-2 in posterior oropharyngeal (deep throat) saliva samples from patients with COVID-19, and serum antibody responses. Methods We did a cohort study at two hospitals in Hong Kong. We included patients with laboratory-confirmed COVID-19. We obtained samples of blood, urine, posterior oropharyngeal saliva, and rectal swabs. Serial viral load was ascertained by reverse transcriptase quantitative PCR (RT-qPCR). Antibody levels against the SARS-CoV-2 internal nucleoprotein (NP) and surface spike protein receptor binding domain (RBD) were measured using EIA. Whole-genome sequencing was done to identify possible mutations arising during infection. Findings Between Jan 22, 2020, and Feb 12, 2020, 30 patients were screened for inclusion, of whom 23 were included (median age 62 years [range 37–75]). The median viral load in posterior oropharyngeal saliva or other respiratory specimens at presentation was 5·2 log10 copies per mL (IQR 4·1–7·0). Salivary viral load was highest during the first week after symptom onset and subsequently declined with time (slope −0·15, 95% CI −0·19 to −0·11; R 2=0·71). In one patient, viral RNA was detected 25 days after symptom onset. Older age was correlated with higher viral load (Spearman's ρ=0·48, 95% CI 0·074–0·75; p=0·020). For 16 patients with serum samples available 14 days or longer after symptom onset, rates of seropositivity were 94% for anti-NP IgG (n=15), 88% for anti-NP IgM (n=14), 100% for anti-RBD IgG (n=16), and 94% for anti-RBD IgM (n=15). Anti-SARS-CoV-2-NP or anti-SARS-CoV-2-RBD IgG levels correlated with virus neutralisation titre (R 2>0·9). No genome mutations were detected on serial samples. Interpretation Posterior oropharyngeal saliva samples are a non-invasive specimen more acceptable to patients and health-care workers. Unlike severe acute respiratory syndrome, patients with COVID-19 had the highest viral load near presentation, which could account for the fast-spreading nature of this epidemic. This finding emphasises the importance of stringent infection control and early use of potent antiviral agents, alone or in combination, for high-risk individuals. Serological assay can complement RT-qPCR for diagnosis. Funding Richard and Carol Yu, May Tam Mak Mei Yin, The Shaw Foundation Hong Kong, Michael Tong, Marina Lee, Government Consultancy Service, and Sanming Project of Medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility

              Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can spread rapidly within skilled nursing facilities. After identification of a case of Covid-19 in a skilled nursing facility, we assessed transmission and evaluated the adequacy of symptom-based screening to identify infections in residents. Methods We conducted two serial point-prevalence surveys, 1 week apart, in which assenting residents of the facility underwent nasopharyngeal and oropharyngeal testing for SARS-CoV-2, including real-time reverse-transcriptase polymerase chain reaction (rRT-PCR), viral culture, and sequencing. Symptoms that had been present during the preceding 14 days were recorded. Asymptomatic residents who tested positive were reassessed 7 days later. Residents with SARS-CoV-2 infection were categorized as symptomatic with typical symptoms (fever, cough, or shortness of breath), symptomatic with only atypical symptoms, presymptomatic, or asymptomatic. Results Twenty-three days after the first positive test result in a resident at this skilled nursing facility, 57 of 89 residents (64%) tested positive for SARS-CoV-2. Among 76 residents who participated in point-prevalence surveys, 48 (63%) tested positive. Of these 48 residents, 27 (56%) were asymptomatic at the time of testing; 24 subsequently developed symptoms (median time to onset, 4 days). Samples from these 24 presymptomatic residents had a median rRT-PCR cycle threshold value of 23.1, and viable virus was recovered from 17 residents. As of April 3, of the 57 residents with SARS-CoV-2 infection, 11 had been hospitalized (3 in the intensive care unit) and 15 had died (mortality, 26%). Of the 34 residents whose specimens were sequenced, 27 (79%) had sequences that fit into two clusters with a difference of one nucleotide. Conclusions Rapid and widespread transmission of SARS-CoV-2 was demonstrated in this skilled nursing facility. More than half of residents with positive test results were asymptomatic at the time of testing and most likely contributed to transmission. Infection-control strategies focused solely on symptomatic residents were not sufficient to prevent transmission after SARS-CoV-2 introduction into this facility.
                Bookmark

                Author and article information

                Journal
                N Engl J Med
                N. Engl. J. Med
                nejm
                The New England Journal of Medicine
                Massachusetts Medical Society
                0028-4793
                1533-4406
                24 April 2020
                : NEJMe2009758
                Affiliations
                From the Department of Medicine, University of California, San Francisco.
                Article
                NJ202004243820006
                10.1056/NEJMe2009758
                7200054
                32329972
                5d5d9bb0-f13c-412f-84f4-28819bbfdcdf
                Copyright © 2020 Massachusetts Medical Society. All rights reserved.

                This article is made available via the PMC Open Access Subset for unrestricted re-use, except commercial resale, and analyses in any form or by any means with acknowledgment of the original source. These permissions are granted for the duration of the Covid-19 pandemic or until revoked in writing. Upon expiration of these permissions, PMC is granted a license to make this article available via PMC and Europe PMC, subject to existing copyright protections.

                History
                Categories
                Editorial
                Custom metadata
                2020-04-24T12:00:00-04:00
                2020
                04
                24
                12
                00
                00
                -04:00

                Comments

                Comment on this article