48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of a DPP4 inhibitor on cisplatin-induced acute kidney injury: study protocol for a randomized controlled trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cisplatin is a potent chemotherapeutic agent, but its nephrotoxicity, which results in acute kidney injury (AKI), often limits its clinical application. Although many studies have attempted to target the mechanism responsible for its nephrotoxicity, no such method has been demonstrated to be effective in clinical trials. Recently, a dipeptidyl peptidase-4 (DPP4) inhibitor has been reported to have a renoprotective effect in a mouse model of cisplatin-induced AKI. Therefore, we will evaluate whether a DPP4 inhibitor protects the kidney from cisplatin-induced injury in humans.

          Methods/Design

          This is a single-center, prospective, randomized, double-blind, placebo-controlled trial. A total of 182 participants who are scheduled for cisplatin treatment will be enrolled and randomly assigned to receive either a DPP4 inhibitor (gemigliptin) or a placebo. Participants will take the study drugs for 8 days starting 1 day before cisplatin treatment. The primary outcome of interest is the incidence of AKI at 7 days after finishing treatment with cisplatin. The secondary outcomes include changes in serum creatinine levels and estimated glomerular filtration rates from baseline to 7 days after cisplatin treatment.

          Discussion

          This is the first clinical trial to investigate the effect of a DPP4 inhibitor on cisplatin-induced AKI.

          Trial registration

          ClinicalTrials.gov number NCT02250872, December 26, 2014.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV.

          Dipeptidyl-peptidase IV/CD26 (DPP IV) is a cell-surface protease belonging to the prolyloligopeptidase family. It selectively removes the N-terminal dipeptide from peptides with proline or alanine in the second position. Apart from its catalytic activity, it interacts with several proteins, for instance, adenosine deaminase, the HIV gp120 protein, fibronectin, collagen, the chemokine receptor CXCR4, and the tyrosine phosphatase CD45. DPP IV is expressed on a specific set of T lymphocytes, where it is up-regulated after activation. It is also expressed in a variety of tissues, primarily on endothelial and epithelial cells. A soluble form is present in plasma and other body fluids. DPP IV has been proposed as a diagnostic or prognostic marker for various tumors, hematological malignancies, immunological, inflammatory, psychoneuroendocrine disorders, and viral infections. DPP IV truncates many bioactive peptides of medical importance. It plays a role in glucose homeostasis through proteolytic inactivation of the incretins. DPP IV inhibitors improve glucose tolerance and pancreatic islet cell function in animal models of type 2 diabetes and in diabetic patients. The role of DPP IV/ CD26 within the immune system is a combination of its exopeptidase activity and its interactions with different molecules. This enables DPP IV/CD26 to serve as a co-stimulatory molecule to influence T cell activity and to modulate chemotaxis. DPP IV is also implicated in HIV-1 entry, malignant transformation, and tumor invasion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice

            OBJECTIVE Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. RESEARCH DESIGN AND METHODS We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. RESULTS Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 ± 2% versus 29 ± 3%, P = 0.02) and improved cardiac output (12.4 ± 0.6 versus 9.7 ± 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3β, PPARβ-δ, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R–dependent manner in vitro. CONCLUSIONS These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity

                Bookmark

                Author and article information

                Contributors
                haya2001@hanmail.net
                sehyunkim@snubh.org
                whunt@daum.net
                cong1005@snubh.org
                hmodoctor@snubh.org
                82-31-787-7014 , kyna@snubh.org
                Journal
                Trials
                Trials
                Trials
                BioMed Central (London )
                1745-6215
                29 May 2015
                29 May 2015
                2015
                : 16
                : 239
                Affiliations
                [ ]Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do 463-707 South Korea
                [ ]Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do 463-707 South Korea
                Article
                772
                10.1186/s13063-015-0772-4
                4449575
                26021829
                5d5f8dde-37e0-4745-a2ec-42f513a1bb66
                © Baek et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 January 2015
                : 21 May 2015
                Categories
                Study Protocol
                Custom metadata
                © The Author(s) 2015

                Medicine
                acute kidney injury,cisplatin,dpp4 inhibitor,nephrotoxicity
                Medicine
                acute kidney injury, cisplatin, dpp4 inhibitor, nephrotoxicity

                Comments

                Comment on this article