5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: a review of the current clinical evidence

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Safinamide (Xadago ®) is a novel medication with both dopaminergic and non-dopaminergic effects, approved first by the European Commission and more recently by the US Food and Drug Administration (FDA) as an adjunctive treatment to carbidopa/levodopa in patients with mid- to late-stage Parkinson’s disease (PD) and motor fluctuations. It works through multiple mechanisms, namely as a reversible selective monoamine oxidase-B inhibitor and through modulation of glutamate release. Safinamide is extensively metabolized via oxidation to several inactive metabolites that are excreted primarily through the urine. Several large Phase III clinical trials of patients with advanced PD with motor fluctuations have shown that safinamide, administered orally at doses of 50–100 mg daily, increased ON time with no or non-troublesome dyskinesia, decreased daily OFF time, improved overall motor function (as measured by Unified Parkinson’s Disease Rating Scale [UPDRS] part III total score), and quality of life (as measured by Clinical Global Impression-Change and 39-item Parkinson’s Disease Questionnaire). In large clinical trials of patients with early PD on a single dopamine agonist, safinamide administered orally at a dose of 100 mg daily improved overall motor function as measured by UPDRS part III total score; however, some of the results reported were exploratory. Safinamide is generally well-tolerated and safe, with few to no treatment-related adverse events. Safinamide does not cause new or worsening dyskinesia and may be able to reduce this symptom in patients reporting it at baseline. Evidence suggests that safinamide is a good option for add-on therapy to carbidopa/levodopa in patients with advanced PD with motor complications, but there is still insufficient evidence to recommend it as monotherapy or add-on therapy in patients with early PD.

          Video abstract

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: found
          • Article: not found

          An anti-Parkinson's disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells.

          N-Propargyl-1(R)-aminoindan (rasagiline) is now under phase III clinical trials for Parkinson's disease (PD), and it rescues dopamine neurons from cell death in animal and cellular models of PD. Recently, we proved that rasagiline protected dopaminergic SH-SY5Y cells against apoptosis induced by a dopaminergic neurotoxin, N-methyl(R)salsolinol, and the mechanism was clarified to be due to suppression of death signal transduction in mitochondria. In this paper, the effects of rasagiline on the levels of anti-apoptotic bcl-2 gene family were studied. Rasagiline increased the levels of bcl-2 and bcl-x(l) mRNA at 100-10 nM and 100-10 pM, but not the level of pro-apoptotic bax mRNA. Enhanced expression of bcl-2 family indicates the ability of rasagiline to adjust the apoptotic threshold and protect degenerating neurons in PD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relating mode of action to clinical practice: dopaminergic agents in Parkinson's disease.

            Most treatment advances in PD have been based on restoring dopaminergic input. The development of levodopa was the first breakthrough and, since then, other compounds have been developed. Each antiparkinsonian medication has its own profile of efficacy and adverse effects, and these can largely be explained by their modes of action. As patients receive a number of different compounds, physicians should be aware of the differences of agents and understand how these differences may relate to clinical practice. This article reviews the three main classes of dopaminergic PD therapy (levodopa, monoamine oxidase inhibitors and dopamine agonists).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan.

              The role of mitochondrial permeability transition (PT) in apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol [NM(R)Sal], was studied by use of dopaminergic neuroblastoma SH-SY5Y cells. NM(R)Sal reduced mitochondrial membrane potential, DeltaPsim, in the early phase of apoptosis, which was not suppressed by a pan-caspase inhibitor, but was antagonized by Bcl-2 and cyclosporin A, suggesting the involvement of the PT in NM(R)Sal-induced loss of DeltaPsim. NM(R)Sal-induced apoptosis was completely inhibited not only by Bcl-2 and a pan-caspase inhibitor, but also by cyclosporin A, suggesting the essential role of the PT in NM(R)Sal-induced apoptosis. In mitochondria isolated from rat liver, NM(R)Sal induced swelling and reduced DeltaPsim, which was inhibited by cyclosporin A and Bcl-2 overexpression. These results indicate that NM(R)Sal induced the PT by direct action on the mitochondria. Rasagiline, N-propargyl-1(R)-aminoindan, which is a now under a clinical trial for Parkinson's disease, suppressed the DeltaPsim reduction, release of cytochrome c, and apoptosis induced by NM(R)Sal in SH-SY5Y cells. Rasagiline also inhibited the NM(R)Sal-induced loss of DeltaPsim and swelling in the isolated mitochondria, proving that rasagiline directly targets the mitochondria also. Altogether, mitochondrial PT plays a key role both in NM(R)Sal-induced cell death and the neuroprotective effect of rasagiline.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                2018
                18 September 2018
                : 14
                : 1737-1745
                Affiliations
                Department of Neurology, Division of Parkinson’s Disease and Movement Disorders, University of Miami – Miller School of Medicine, Miami, FL, USA, hmoore@ 123456med.miami.edu
                Author notes
                Correspondence: Henry Moore, Department of Neurology, Division of Parkinson’s Disease and Movement Disorders, University of Miami – Miller School of Medicine, 1120 NW 14th Street, 13th floor, Miami, FL 33136, USA, Email hmoore@ 123456med.miami.edu
                Article
                tcrm-14-1737
                10.2147/TCRM.S139545
                6152599
                © 2018 Bette et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Medicine

                dyskinesia, motor fluctuations, mao-b inhibitor, safinamide, parkinson’s disease

                Comments

                Comment on this article