19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The changing face of pathogen discovery and surveillance

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of new microbial infections is ever more likely with the globalization of trade and travel, changes to agricultural practices and climate change. However, as Lipkin describes in this Essay, this threat is being met by dramatic technological advances in pathogen discovery, surveillance and modelling.

          Abstract

          The pace of pathogen discovery is rapidly accelerating. This reflects not only factors that enable the appearance and globalization of new microbial infections, but also improvements in methods for ascertaining the cause of a new disease. Innovative molecular diagnostic platforms, investments in pathogen surveillance (in wildlife, domestic animals and humans) and the advent of social media tools that mine the World Wide Web for clues indicating the occurrence of infectious-disease outbreaks are all proving to be invaluable for the early recognition of threats to public health. In addition, models of microbial pathogenesis are becoming more complex, providing insights into the mechanisms by which microorganisms can contribute to chronic illnesses like cancer, peptic ulcer disease and mental illness. Here, I review the factors that contribute to infectious-disease emergence, as well as strategies for addressing the challenges of pathogen surveillance and discovery.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Global trends in emerging infectious diseases

          The next new disease Emerging infectious diseases are a major threat to health: AIDS, SARS, drug-resistant bacteria and Ebola virus are among the more recent examples. By identifying emerging disease 'hotspots', the thinking goes, it should be possible to spot health risks at an early stage and prepare containment strategies. An analysis of over 300 examples of disease emerging between 1940 and 2004 suggests that these hotspots can be accurately mapped based on socio-economic, environmental and ecological factors. The data show that the surveillance effort, and much current research spending, is concentrated in developed economies, yet the risk maps point to developing countries as the more likely source of new diseases. Supplementary information The online version of this article (doi:10.1038/nature06536) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

            P Rota (2003)
            In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interactions between the microbiota and the immune system.

              The large numbers of microorganisms that inhabit mammalian body surfaces have a highly coevolved relationship with the immune system. Although many of these microbes carry out functions that are critical for host physiology, they nevertheless pose the threat of breach with ensuing pathologies. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, thus ensuring that the mutualistic nature of the host-microbial relationship is maintained. At the same time, resident bacteria profoundly shape mammalian immunity. Here, we review advances in our understanding of the interactions between resident microbes and the immune system and the implications of these findings for human health.
                Bookmark

                Author and article information

                Contributors
                wil2001@columbia.edu
                Journal
                Nat Rev Microbiol
                Nat. Rev. Microbiol
                Nature Reviews. Microbiology
                Nature Publishing Group UK (London )
                1740-1526
                1740-1534
                3 January 2013
                2013
                : 11
                : 2
                : 133-141
                Affiliations
                GRID grid.21729.3f, ISNI 0000000419368729, W. Ian Lipkin is at the Center for Infection and Immunity, Mailman School of Public Health of Columbia University, New York, New York 10032, USA, ; ,
                Article
                BFnrmicro2949
                10.1038/nrmicro2949
                4098826
                23268232
                5d782daf-18da-447f-8c7d-ec2ac9adeebf
                © Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2013

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2013

                epidemiology,infectious diseases,public health,pathogens,clinical microbiology,pathogenesis

                Comments

                Comment on this article