23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The specific and sensitive detection of peroxynitrite (ONOO-/ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×106M-1s-1, a million times faster than the rate constant measured for H2O2 (k=1.7M-1s-1) and 2,700 faster than HOCl (6.2×102M-1s-1) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO2, a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs-1, while immunostimulated macrophages do so in the order of ∼1μMs-1 inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be more sensitive than the coumarin boronate due to a higher molar absorption coefficient and quantum yield. Overall, our results show that Fl-B is a kinetically selective and highly sensitive probe for the direct detection of cell-derived peroxynitrite.

          Related collections

          Author and article information

          Journal
          Free Radic. Biol. Med.
          Free radical biology & medicine
          Elsevier BV
          1873-4596
          0891-5849
          December 2016
          : 101
          Affiliations
          [1 ] Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
          [2 ] Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
          [3 ] Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
          [4 ] Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay. Electronic address: rradi@fmed.edu.uy.
          Article
          S0891-5849(16)30414-2
          10.1016/j.freeradbiomed.2016.08.033
          27641237
          5d7d86a3-b0ef-4245-a3ce-d3fd26dcaa15
          History

          Oxidants,Peroxynitrite,Macrophage infection,Free radicals,Fluorescent probes,Fluorescein-boronate,Endothelial cells

          Comments

          Comment on this article