29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bilateral increase in expression and concentration of tachykinin in a unilateral rabbit muscle overuse model that leads to myositis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation.

          Methods

          The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1–6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied.

          Results

          Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides.

          Conclusions

          The observations show an up-regulation of the tachykinin system bilaterally during muscle derangement/myositis in response to pronounced unilateral muscle overuse. This up-regulation occurred in inflammatory areas and was related not only to increased tachykinin innervation but also to tachykinin expression in blood vessel walls and inflammatory cells. Importantly, the tachykinin system appears to be an important factor not only ipsilaterally but also contralaterally in these processes.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          The role of substance P in inflammatory disease.

          The diffuse neuroendocrine system consists of specialised endocrine cells and peptidergic nerves and is present in all organs of the body. Substance P (SP) is secreted by nerves and inflammatory cells such as macrophages, eosinophils, lymphocytes, and dendritic cells and acts by binding to the neurokinin-1 receptor (NK-1R). SP has proinflammatory effects in immune and epithelial cells and participates in inflammatory diseases of the respiratory, gastrointestinal, and musculoskeletal systems. Many substances induce neuropeptide release from sensory nerves in the lung, including allergen, histamine, prostaglandins, and leukotrienes. Patients with asthma are hyperresponsive to SP and NK-1R expression is increased in their bronchi. Neurogenic inflammation also participates in virus-associated respiratory infection, non-productive cough, allergic rhinitis, and sarcoidosis. SP regulates smooth muscle contractility, epithelial ion transport, vascular permeability, and immune function in the gastrointestinal tract. Elevated levels of SP and upregulated NK-1R expression have been reported in the rectum and colon of patients with inflammatory bowel disease (IBD), and correlate with disease activity. Increased levels of SP are found in the synovial fluid and serum of patients with rheumatoid arthritis (RA) and NK-1R mRNA is upregulated in RA synoviocytes. Glucocorticoids may attenuate neurogenic inflammation by decreasing NK-1R expression in epithelial and inflammatory cells and increasing production of neutral endopeptidase (NEP), an enzyme that degrades SP. Preventing the proinflammatory effects of SP using tachykinin receptor antagonists may have therapeutic potential in inflammatory diseases such as asthma, sarcoidosis, chronic bronchitis, IBD, and RA. In this paper, we review the role that SP plays in inflammatory disease. Copyright 2004 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Does the right side know what the left is doing?

            Following peripheral-nerve lesions there are well-documented events that affect the contralateral nonlesioned structures. These contralateral effects are qualitatively similar to those occurring at the ipsilateral side, but are usually smaller in magnitude and have a briefer time course. It is unclear whether the findings are an epiphenomenon or serve a biological purpose, but in either case the existence of these effects implies the presence of unrecognized signalling mechanisms that link the two sides of the body. Strong circumstantial evidence argues against a peripheral mechanism (for example, via circulating factors) and in favour of a central mechanism, in particular signalling via the system of commissural interneurons that is present in spinal cord and brainstem. While an altered pattern of activity in this system might underlie the phenomenon, there are several reasons for proposing that the changes depend upon chemical signals, possibly growth factors. Because of its relative easy access for experimental manipulation, the spinal cord could serve as a model system to study these transmedian signalling systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bayesian calibration of simultaneity in tactile temporal order judgment.

              Human judgment of the temporal order of two sensory signals is liable to change depending on our prior experiences. Previous studies have reported that signals presented at short intervals but in the same order as the most frequently repeated signal are perceived as occurring simultaneously. Here we report opposite perceptual changes that conform to a Bayesian integration theory in judging the order of two stimuli delivered one to each hand.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Musculoskelet Disord
                BMC Musculoskelet Disord
                BMC Musculoskeletal Disorders
                BioMed Central
                1471-2474
                2013
                12 April 2013
                : 14
                : 134
                Affiliations
                [1 ]Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
                [2 ]Department of Surgical and Perioperative Sciences, Sports Medicine, Umeå University, Umeå, Sweden
                Article
                1471-2474-14-134
                10.1186/1471-2474-14-134
                3637117
                23587295
                5d875ef5-a0f8-40ed-ab8e-1c7bf9b93282
                Copyright ©2013 Song et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 January 2013
                : 3 April 2013
                Categories
                Research Article

                Orthopedics
                muscle,triceps surae,muscle overuse,myositis,inflammation,tachykinin,substance p
                Orthopedics
                muscle, triceps surae, muscle overuse, myositis, inflammation, tachykinin, substance p

                Comments

                Comment on this article