17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The lncRNA Plscr4 Controls Cardiac Hypertrophy by Regulating miR-214

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac hypertrophy accompanied by maladaptive cardiac remodeling is the uppermost risk factor for the development of heart failure. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have various biological functions, and their vital role in the regulation of cardiac hypertrophy still needs to be explored. In this study, we demonstrated that lncRNA Plscr4 was upregulated in hypertrophic mice hearts and in angiotensin II (Ang II)–treated cardiomyocytes. Next, we observed that overexpression of Plscr4 attenuated Ang II-induced cardiomyocyte hypertrophy. Conversely, the inhibition of Plscr4 gave rise to cardiomyocyte hypertrophy. Furthermore, overexpression of Plscr4 attenuated TAC (transverse aortic constriction)-induced cardiac hypertrophy. Finally, we demonstrated that Plscr4 acted as an endogenous sponge of miR-214 and forced expression of Plscr4 downregulated miR-214 expression to promote Mfn2 and attenuate hypertrophy. In contrast, knockdown of Plscr4 upregulated miR-214 to induce cardiomyocyte hypertrophy. Additionally, luciferase assay showed that miR-214 was the direct target of Plscr4, and overexpression of miR-214 counteracted the anti-hypertrophy effect of Plscr4. Collectively, these findings identify Plscr4 as a negative regulator of cardiac hypertrophy in vivo and in vitro due to its regulation of the miR-214-Mfn2 axis, suggesting that Plscr4 might act as a therapeutic target for the treatment of cardiac hypertrophy and heart failure.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies.

          Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure. 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489.

            Sustained cardiac hypertrophy is often accompanied by maladaptive cardiac remodeling leading to decreased compliance and increased risk for heart failure. Maladaptive hypertrophy is considered to be a therapeutic target for heart failure. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have various biological functions and have been extensively investigated in past years.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation.

              Abnormal mitochondrial fission participates in the pathogenesis of many diseases. Long non-coding RNAs (lncRNAs) are emerging as new players in gene regulation, but how lncRNAs operate in the regulation of mitochondrial network is unclear. Here we report that a lncRNA, named cardiac apoptosis-related lncRNA (CARL), can suppress mitochondrial fission and apoptosis by targeting miR-539 and PHB2. The results show that PHB2 is able to inhibit mitochondrial fission and apoptosis. miR-539 is responsible for the dysfunction of PHB2 and regulates mitochondrial fission and apoptosis by targeting PHB2. Further, we show that CARL can act as an endogenous miR-539 sponge that regulates PHB2 expression, mitochondrial fission and apoptosis. Our present study reveals a model of mitochondrial fission regulation that is composed of CARL, miR-539 and PHB2. Modulation of their levels may provide a new approach for tackling apoptosis and myocardial infarction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Nucleic Acids
                Mol Ther Nucleic Acids
                Molecular Therapy. Nucleic Acids
                American Society of Gene & Cell Therapy
                2162-2531
                30 December 2017
                02 March 2018
                30 December 2017
                : 10
                : 387-397
                Affiliations
                [1 ]Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
                [2 ]Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
                Author notes
                []Corresponding author: Professor Haihai Liang, Baojian Road 157, Harbin, Heilongjiang 150081, China. lianghaihai@ 123456ems.hrbmu.edu.cn
                [∗∗ ]Corresponding author: Professor Hongli Shan, Baojian Road 157, Harbin, Heilongjiang 150081, China. shanhongli@ 123456ems.hrbmu.edu.cn
                [3]

                These authors contributed equally to this work.

                Article
                S2162-2531(17)30319-0
                10.1016/j.omtn.2017.12.018
                5862136
                29499950
                5d9bff03-88aa-4bee-bd4d-f74d979f4ea5
                © 2017 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 20 September 2017
                : 22 December 2017
                Categories
                Article

                Molecular medicine
                cardiac hypertrophy,lncrna plscr4,mir-214,mfn2
                Molecular medicine
                cardiac hypertrophy, lncrna plscr4, mir-214, mfn2

                Comments

                Comment on this article