1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling current and future global distribution of Chrysomya bezziana under changing climate

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the last few years, significant changes in climate have had a disparate effect on biodiversity. The influences of these changes are random and unpredictable. The resurgence of insect pests, especially of medical and veterinary importance, often corresponds with climate changes. The Old World screwworm, Chrysomya bezziana, is one of the most important myiasis-causing flies that parasitize warm-blooded animals in the Eastern Hemisphere. We used a spatial distribution modeling approach to estimate the consequences of climatic changes on the potential geographic distribution of this insect throughout the world currently and in the future. A Maxent model used occurrence data from 104 localities and 19 climatic factors to predict the suitable habitat regions throughout the world. Two representative concentration pathways 2.6 and 8.5, were used to forecast the future distribution of C. bezziana in 2050 and 2070. The Maxent model for C. bezziana provided a satisfactory result, with a high value of the Area Under Curve equal to 0.855 (±0.001). Furthermore, the True Skilled Statistics value is equal to 0.67. These values indicate the significant influence on the model of the ecology of this fly species. Jackknife test indicated that temperature variables play a significant role in C. bezziana dynamics. The resultant models indicated the areas at risk of invasion by potential serious medical/veterinary issues, especially in countries with a large livestock production.

          Related collections

          Most cited references 44

          • Record: found
          • Abstract: not found
          • Article: not found

          ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global metabolic impacts of recent climate warming.

            Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot

                Bookmark

                Author and article information

                Contributors
                iobek@sci.asu.edu.eg
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 March 2020
                18 March 2020
                2020
                : 10
                Affiliations
                ISNI 0000 0004 0621 1570, GRID grid.7269.a, Department of Entomology, Faculty of Science, , Ain Shams University, Abbassia, ; Cairo, 11566 Egypt
                Article
                61962
                10.1038/s41598-020-61962-8
                7080715
                32188920
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized

                biogeography, entomology

                Comments

                Comment on this article