19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lack of population differentiation patterns of previously identified putatively adaptive transposable element insertions at microgeographic scales

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Transposable elements (TEs) play an important role in genome function and evolution. It has been shown that TEs are a considerable source of adaptive changes in the genome of Drosophila melanogaster. Specifically, footprints of selection at the DNA level, the presence of population differentiation patterns across environmental gradients, and detailed mechanistic and fitness analyses of a few candidate adaptive TEs pointed to the role of TEs in environmental adaptation. However, whether the population differentiation patterns observed at large geographic scales can be replicated at a microgeographic scale has never been assessed before.

          Results

          In this work, we explored the population patterns of putatively adaptive TEs at a micro-spatial scale level. We compared the frequencies of TEs, previously identified as putatively adaptive and putatively neutral, in populations collected in opposite slopes of the Evolution Canyon at Mt. Carmel in Israel separated by 200 m on average. However, the differentiation patterns previously observed across large geographic distances (2000–2200 km) were not replicated at the microscale level of the Evolution Canyon populations.

          Conclusion

          TE insertions previously associated with D. melanogaster environmental adaptation at a macro scale level do not play such a role at the microscale level of the Evolution Canyon populations. However, these results do not exclude a role of TEs in microgeographic adaptation because the dataset analyzed in this work is restricted to TEs identified in a single North American strain and as such is highly biased and incomplete.

          Reviewers

          This article was reviewed by Eugene Koonin, Limsoon Wong and Fyodor Kondrashov.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How important are transposons for plant evolution?

            For decades, transposable elements have been known to produce a wide variety of changes in plant gene expression and function. This has led to the idea that transposable element activity has played a key part in adaptive plant evolution. This Review describes the kinds of changes that transposable elements can cause, discusses evidence that those changes have contributed to plant evolution and suggests future strategies for determining the extent to which these changes have in fact contributed to plant adaptation and evolution. Recent advances in genomics and phenomics for a range of plant species, particularly crops, have begun to allow the systematic assessment of these questions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The impact of transposable elements in environmental adaptation.

              Transposable elements (TEs) play an important role in the responsive capacity of their hosts in the face of environmental challenges. The variety of mechanisms by which TEs influence the capacity of adaptation of the host is as large as the variety of TEs and host genomes. For example, TEs might directly affect the function of individual genes, provide a mechanism for rapidly acquiring new genetic material and disseminate regulatory elements that can lead to the creation of stress-inducible regulatory networks. In this review, we summarize recent examples that are part of an increasing body of evidence suggesting a significant role of TEs in the host response to an ever-changing environment, both in prokaryote and in eukaryote organisms. We argue that in the near future, the increasing availability of genome sequences and the development of new tools to discover and analyse TE insertions will further show the relevant role of TEs in environmental adaptation. © 2013 Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                josefa.gonzalez@ibe.upf-csic.es
                martinezagj@gmail.com
                wojmak@uni-muenster.de
                Journal
                Biol Direct
                Biol. Direct
                Biology Direct
                BioMed Central (London )
                1745-6150
                14 October 2015
                14 October 2015
                2015
                : 10
                : 50
                Affiliations
                [ ]Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
                [ ]Institute of Bioinformatics, University of Muenster, Muenster, Germany
                Article
                75
                10.1186/s13062-015-0075-4
                4605094
                5db32113-255b-4370-a1a6-652f8390e5fe
                © González et al. 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 July 2014
                : 14 August 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Life sciences
                transposable elements,evolution canyon,adaptation,drosophila melanogaster,environmental gradients

                Comments

                Comment on this article