+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          The mosquito Aedes aegypti, vector of dengue fever, is a target for control by entomopathogenic fungi. Recent studies by our group have shown the susceptibility of adult A. aegypti to fungal infection by Metarhizium anisopliae. This fungus is currently being tested under field conditions. However, it is unknown whether blood-fed A. aegypti females are equally susceptible to infection by entomopathogenic fungi as sucrose fed females. Insect populations will be composed of females in a range of nutritional states. The fungus should be equally efficient at reducing survival of insects that rest on fungus impregnated surfaces following a blood meal as those coming into contact with fungi before host feeding. This could be an important factor when considering the behavior of A. aegypti females that can blood feed on multiple hosts over a short time period.


          Female A. aegypti of the Rockefeller strain and a wild strain were infected with two isolates of the entomopathogenic fungus M. anisopliae (LPP 133 and ESALQ 818) using an indirect contact bioassay at different times following blood feeding. Survival rates were monitored on a daily basis and one-way analysis of variance combined with Duncan's post-hoc test or Log-rank survival curve analysis were used for statistical comparisons of susceptibility to infection.


          Blood feeding rapidly reduced susceptibility to infection, determined by the difference in survival rates and survival curves, when females were exposed to either of the two M. anisopliae isolates. Following a time lag which probably coincided with digestion of the blood meal (96-120 h post-feeding), host susceptibility to infection returned to pre-blood fed (sucrose fed) levels.


          Reduced susceptibility of A. aegypti to fungi following a blood meal is of concern. Furthermore, engorged females seeking out intra-domicile resting places post-blood feeding, would be predicted to rest for prolonged periods on fungus impregnated black cloths, thus optimizing infection rates. It should be remembered that lowered susceptibility was only a temporary phenomenon and this may not necessarily occur when mosquitoes are infected with other fungal isolates. These results may have implications for field testing of entomopathogenic fungi by our group and further studies should be carried out to better understand the insect-fungus interaction.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes

          Background To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.
            • Record: found
            • Abstract: found
            • Article: not found

            An entomopathogenic fungus for control of adult African malaria mosquitoes.

            Biological control of malaria mosquitoes in Africa has rarely been used in vector control programs. Recent developments in this field show that certain fungi are virulent to adult Anopheles mosquitoes. Practical delivery of an entomopathogenic fungus that infected and killed adult Anopheles gambiae, Africa's main malaria vector, was achieved in rural African village houses. An entomological inoculation rate model suggests that implementation of this vector control method, even at the observed moderate coverage during a field study in Tanzania, would significantly reduce malaria transmission intensity.
              • Record: found
              • Abstract: found
              • Article: not found

              Fungal pathogen reduces potential for malaria transmission.

              Using a rodent malaria model, we found that exposure to surfaces treated with fungal entomopathogens following an infectious blood meal reduced the number of mosquitoes able to transmit malaria by a factor of about 80. Fungal infection, achieved through contact with both solid surfaces and netting for durations well within the typical post-feed resting periods, was sufficient to cause >90% mortality. Daily mortality rates escalated dramatically around the time of sporozoite maturation, and infected mosquitoes showed reduced propensity to blood feed. Residual sprays of fungal biopesticides might replace or supplement chemical insecticides for malaria control, particularly in areas of high insecticide resistance.

                Author and article information

                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                26 May 2011
                : 4
                : 91
                [1 ]Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil
                [2 ]Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Brazil
                Copyright ©2011 Paula et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



                Comment on this article