61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How does morality work in the brain? A functional and structural perspective of moral behavior

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neural underpinnings of morality are not yet well understood. Researchers in moral neuroscience have tried to find specific structures and processes that shed light on how morality works. Here, we review the main brain areas that have been associated with morality at both structural and functional levels and speculate about how it can be studied. Orbital and ventromedial prefrontal cortices are implicated in emotionally-driven moral decisions, while dorsolateral prefrontal cortex appears to moderate its response. These competing processes may be mediated by the anterior cingulate cortex. Parietal and temporal structures play important roles in the attribution of others' beliefs and intentions. The insular cortex is engaged during empathic processes. Other regions seem to play a more complementary role in morality. Morality is supported not by a single brain circuitry or structure, but by several circuits overlapping with other complex processes. The identification of the core features of morality and moral-related processes is needed. Neuroscience can provide meaningful insights in order to delineate the boundaries of morality in conjunction with moral psychology.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Abstract reward and punishment representations in the human orbitofrontal cortex.

          The orbitofrontal cortex (OFC) is implicated in emotion and emotion-related learning. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activation in human subjects doing an emotion-related visual reversal-learning task in which choice of the correct stimulus led to a probabilistically determined 'monetary' reward and choice of the incorrect stimulus led to a monetary loss. Distinct areas of the OFC were activated by monetary rewards and punishments. Moreover, in these areas, we found a correlation between the magnitude of the brain activation and the magnitude of the rewards and punishments received. These findings indicate that one emotional involvement of the human orbitofrontal cortex is its representation of the magnitudes of abstract rewards and punishments, such as receiving or losing money.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies.

            Most of our social interactions involve perception of emotional information from the faces of other people. Furthermore, such emotional processes are thought to be aberrant in a range of clinical disorders, including psychosis and depression. However, the exact neurofunctional maps underlying emotional facial processing are not well defined. Two independent researchers conducted separate comprehensive PubMed (1990 to May 2008) searches to find all functional magnetic resonance imaging (fMRI) studies using a variant of the emotional faces paradigm in healthy participants. The search terms were: "fMRI AND happy faces," "fMRI AND sad faces," "fMRI AND fearful faces," "fMRI AND angry faces," "fMRI AND disgusted faces" and "fMRI AND neutral faces." We extracted spatial coordinates and inserted them in an electronic database. We performed activation likelihood estimation analysis for voxel-based meta-analyses. Of the originally identified studies, 105 met our inclusion criteria. The overall database consisted of 1785 brain coordinates that yielded an overall sample of 1600 healthy participants. Quantitative voxel-based meta-analysis of brain activation provided neurofunctional maps for 1) main effect of human faces; 2) main effect of emotional valence; and 3) modulatory effect of age, sex, explicit versus implicit processing and magnetic field strength. Processing of emotional faces was associated with increased activation in a number of visual, limbic, temporoparietal and prefrontal areas; the putamen; and the cerebellum. Happy, fearful and sad faces specifically activated the amygdala, whereas angry or disgusted faces had no effect on this brain region. Furthermore, amygdala sensitivity was greater for fearful than for happy or sad faces. Insular activation was selectively reported during processing of disgusted and angry faces. However, insular sensitivity was greater for disgusted than for angry faces. Conversely, neural response in the visual cortex and cerebellum was observable across all emotional conditions. Although the activation likelihood estimation approach is currently one of the most powerful and reliable meta-analytical methods in neuroimaging research, it is insensitive to effect sizes. Our study has detailed neurofunctional maps to use as normative references in future fMRI studies of emotional facial processing in psychiatric populations. We found selective differences between neural networks underlying the basic emotions in limbic and insular brain regions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neural basis of altruistic punishment.

              Many people voluntarily incur costs to punish violations of social norms. Evolutionary models and empirical evidence indicate that such altruistic punishment has been a decisive force in the evolution of human cooperation. We used H2 15O positron emission tomography to examine the neural basis for altruistic punishment of defectors in an economic exchange. Subjects could punish defection either symbolically or effectively. Symbolic punishment did not reduce the defector's economic payoff, whereas effective punishment did reduce the payoff. We scanned the subjects' brains while they learned about the defector's abuse of trust and determined the punishment. Effective punishment, as compared with symbolic punishment, activated the dorsal striatum, which has been implicated in the processing of rewards that accrue as a result of goal-directed actions. Moreover, subjects with stronger activations in the dorsal striatum were willing to incur greater costs in order to punish. Our findings support the hypothesis that people derive satisfaction from punishing norm violations and that the activation in the dorsal striatum reflects the anticipated satisfaction from punishing defectors.
                Bookmark

                Author and article information

                Journal
                Front Integr Neurosci
                Front Integr Neurosci
                Front. Integr. Neurosci.
                Frontiers in Integrative Neuroscience
                Frontiers Media S.A.
                1662-5145
                12 September 2013
                2013
                : 7
                : 65
                Affiliations
                [1] 1Department of Personality, University of Barcelona Barcelona, Spain
                [2] 2Mint Labs S.L. Barcelona, Spain
                [3] 3Institute for Brain, Cognition, and Behavior (IR3C), Universitat de Barcelona Barcelona, Spain
                Author notes

                Edited by: Gordon M. Shepherd, Yale University School of Medicine, USA

                Reviewed by: Antonio Pereira, Federal University of Rio Grande do Norte, Brazil; Alexander J. Shackman, University of Maryland, USA

                *Correspondence: David Gallardo-Pujol, Department of Psychology, University of Barcelona, Passeig de la Vall d'Hebron 171, Barcelona, 08035, Spain e-mail: david.gallardo@ 123456ub.edu

                This article was submitted to the journal Frontiers in Integrative Neuroscience.

                Article
                10.3389/fnint.2013.00065
                3770908
                24062650
                5dce0144-36b8-4382-a5b0-3f4debec9452
                Copyright © 2013 Pascual, Rodrigues and Gallardo-Pujol.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 January 2013
                : 10 August 2013
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 79, Pages: 8, Words: 5864
                Categories
                Neuroscience
                Mini Review Article

                Neurosciences
                fmri,morality,neuroscience,moral judgement,social brain,neuroimaging
                Neurosciences
                fmri, morality, neuroscience, moral judgement, social brain, neuroimaging

                Comments

                Comment on this article