56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Future challenges for vection research: definitions, functional significance, measures, and neural bases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper discusses four major challenges facing modern vection research. Challenge 1 (Defining Vection) outlines the different ways that vection has been defined in the literature and discusses their theoretical and experimental ramifications. The term vection is most often used to refer to visual illusions of self-motion induced in stationary observers (by moving, or simulating the motion of, the surrounding environment). However, vection is increasingly being used to also refer to non-visual illusions of self-motion, visually mediated self-motion perceptions, and even general subjective experiences (i.e., “feelings”) of self-motion. The common thread in all of these definitions is the conscious subjective experience of self-motion. Thus, Challenge 2 (Significance of Vection) tackles the crucial issue of whether such conscious experiences actually serve functional roles during self-motion (e.g., in terms of controlling or guiding the self-motion). After more than 100 years of vection research there has been surprisingly little investigation into its functional significance. Challenge 3 (Vection Measures) discusses the difficulties with existing subjective self-report measures of vection (particularly in the context of contemporary research), and proposes several more objective measures of vection based on recent empirical findings. Finally, Challenge 4 (Neural Basis) reviews the recent neuroimaging literature examining the neural basis of vection and discusses the hurdles still facing these investigations.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Separate visual pathways for perception and action.

          Accumulating neuropsychological, electrophysiological and behavioural evidence suggests that the neural substrates of visual perception may be quite distinct from those underlying the visual control of actions. In other words, the set of object descriptions that permit identification and recognition may be computed independently of the set of descriptions that allow an observer to shape the hand appropriately to pick up an object. We propose that the ventral stream of projections from the striate cortex to the inferotemporal cortex plays the major role in the perceptual identification of objects, while the dorsal stream projecting from the striate cortex to the posterior parietal region mediates the required sensorimotor transformations for visually guided actions directed at such objects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A neurological dissociation between perceiving objects and grasping them.

            Studies of the visual capacity of neurological patients have provided evidence for a dissociation between the perceptual report of a visual stimulus and the ability to direct spatially accurate movements toward that stimulus. Some patients with damage to the parietal lobe, for example, are unable to reach accurately towards visual targets that they unequivocally report seeing. Conversely, some patients with extensive damage to primary visual cortex can make accurate pointing movements or saccades toward a stimulus presented in their 'blind' scotoma. But in investigations of visuomotor control in patients with visual disorders, little consideration has been given to complex acts such as manual prehension. Grasping a three-dimensional object requires knowledge not only of the object's spatial location, but also of its form, orientation and size. We have examined a patient with a profound disorder in the perception of such object qualities. Our quantitative analyses demonstrate strikingly accurate guidance of hand and finger movements directed at the very objects whose qualities she fails to perceive. These data suggest that the neural substrates for the visual perception of object qualities such as shape, orientation and size are distinct from those underlying the use of those qualities in the control of manual skills.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging.

              Anatomic and electrophysiological studies in monkeys have yielded a detailed map of cortex areas receiving vestibular afferents. In contrast, comparatively little is known about the cortical representation of the human vestibular system. In this study we applied caloric stimulation and fMRI to further characterize human cortical vestibular areas and to test for hemispheric dominance of vestibular information processing. For caloric vestibular stimulation we used cold nitrogen to avoid susceptibility artifacts induced by water calorics. Right and left side vestibular stimulation was repetitively performed inducing a nystagmus for at least 90 s after the end of the stimulation in all subjects. Only the first 60 s of this nystagmus period was included for statistical analysis and compared with the baseline condition. Activation maps revealed a cortical network with right hemispheric dominance, which in all subjects comprised the temporoparietal junction extending into the posterior insula and, furthermore, the anterior insula, pre- and postcentral gyrus, areas in the parietal lobe, the ventrolateral portion of the occipital lobe, and the inferior frontal gyrus extending into the inferior part of the precentral sulcus. In conclusion, caloric stimulation in fMRI reveals a widespread cortical network involved in vestibular signal processing corresponding to the findings from animal experiments and previous functional imaging studies in humans. Furthermore, this study demonstrates a strong right hemispheric dominance of vestibular cortex areas regardless of the stimulated side, consistent with the current view of a rightward asymmetrical cortical network for spatial orientation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                27 February 2015
                2015
                : 6
                : 193
                Affiliations
                [1] 1School of Psychology, University of Wollongong Wollongong, NSW, Australia
                [2] 2Department of Electrical Engineering and Computer Science, York University Toronto, ON, Canada
                Author notes

                Edited by: Wataru Teramoto, Muroran Institute of Technology, Japan

                Reviewed by: Aleksander Valjamae, Linköping University, Sweden; Jennifer Campos, Toronto Rehabilitation Institute – University Health Network, Canada

                *Correspondence: Stephen Palmisano, School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia e-mail: stephenp@ 123456uow.edu.au

                This article was submitted to Perception Science, a section of the journal Frontiers in Psychology.

                Article
                10.3389/fpsyg.2015.00193
                4342884
                25774143
                5dd6d447-b3c8-4a1e-b1f8-d3eed0ed44f6
                Copyright © 2015 Palmisano, Allison, Schira and Barry.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 December 2014
                : 07 February 2015
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 138, Pages: 15, Words: 0
                Categories
                Psychology
                Review Article

                Clinical Psychology & Psychiatry
                vection,self-motion perception,optic flow,egomotion,conscious experience,functional significance,neural basis

                Comments

                Comment on this article