8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neocarzinostatin acts as a sensitive probe of DNA microheterogeneity: switching of chemistry from C-1' to C-4' by a G.T mismatch 5' to the site of DNA damage.

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The diradical form of thiol-activated neocarzinostatin chromophore resides in the minor groove of DNA, where it has access to hydrogen atoms at the C-5', C-1', and C-4' positions of deoxyribose on each strand. In a dodecamer oligodeoxyribonucleotide containing the sequence AGC.GCT, a bistranded lesion staggered two nucleotides in the 3' direction, is generated that consists primarily of an abasic site (2'-deoxyribonolactone) at the C due to 1' chemistry and a direct strand break at the T due to 5' chemistry. Sequencing-gel analysis reveals that 72% of the damage at the C results from 1' chemistry with minor lesions consisting of a strand break due to 5' chemistry (15%) and 4' chemistry (less than 2%) and an abasic site (4'-hydroxylation product) (12%) due to 4' chemistry. Replacement of the G.C base pair 5' to the C by a G.T wobble mismatch results in a remarkable switching of the chemistry of damage at the C from C-1' to C-4'. The 1' chemistry is almost eliminated and replaced by 4' chemistry, so that the latter accounts for 64% of the damage, mainly in the form of the 4'-hydroxylation product (abasic site) and a smaller amount of the DNA fragment with a phosphoglycolate at the 3' end (strand break). Substitution of the radiation sensitizer misonidazole for dioxygen markedly enhances partitioning of the 4' chemistry in favor of the glycolate-containing product. On the complementary strand the G.T mismatch results in an increase in 4' chemistry at the T residue, but 5' chemistry remains the main mechanism. When a G.A mismatch is inserted 5' to the C, there is a marked decrease in all damage at this site without detectable switching of chemistry. These results show that the diradical form of thiol-activated neocarzinostatin chromophore acts as sensitive probe of DNA microheterogeneity.

          Related collections

          Author and article information

          Journal
          Proc. Natl. Acad. Sci. U.S.A.
          Proceedings of the National Academy of Sciences of the United States of America
          0027-8424
          0027-8424
          Aug 01 1992
          : 89
          : 15
          Affiliations
          [1 ] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.
          Article
          49572
          1386670
          5deddedc-3c5d-438d-8039-9de855c91225
          History

          Comments

          Comment on this article