7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stimuli-Responsive Materials with Self-Healing Antifouling Surface via 3D Polymer Grafting

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          WSXM: a software for scanning probe microscopy and a tool for nanotechnology.

          In this work we briefly describe the most relevant features of WSXM, a freeware scanning probe microscopy software based on MS-Windows. The article is structured in three different sections: The introduction is a perspective on the importance of software on scanning probe microscopy. The second section is devoted to describe the general structure of the application; in this section the capabilities of WSXM to read third party files are stressed. Finally, a detailed discussion of some relevant procedures of the software is carried out.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.

              The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616301X
                September 25 2013
                September 25 2013
                June 03 2013
                : 23
                : 36
                : 4593-4600
                Article
                10.1002/adfm.201300363
                5e02ca85-e89f-4f5a-9c92-f75bc62a9564
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article