8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of sodium citrate on the structure and microbial community composition of an early-stage multispecies biofilm model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, most biofilm studies have focused on fundamental investigations using multispecies biofilm models developed preferentially in simulated naturally occurring low-nutrient medium than in artificial nutrient-rich medium. Because biofilm development under low-nutrient growth media is slow, natural media are often supplemented with an additional carbon source to increase the rate of biofilm formation. However, there are knowledge gaps in interpreting the effects of such supplementation on the resulting biofilm in terms of structure and microbial community composition. We investigated the effects of supplementation of a simulated freshwater medium with sodium citrate on the resulting structure, bacterial community composition, and microbial network interactions of an early-stage multispecies biofilm model. Qualitative and quantitative analyses of acquired confocal laser scanning microscopy data confirmed that sodium citrate supplementation distinctly increased biofilm biomass. Sequencing data revealed that the microbial community structure of biofilms grown in sodium citrate-supplemented conditions was characterized with increased relative abundance and dominance of Proteobacteria compared with that of biofilms grown in sodium citrate-free conditions. Our findings suggest that the supplementation of a low-nutrient medium with a carbon source in experiments involving multispecies biofilms may lead to structural and compositional biases of the microbial community, causing changes in biofilm phenotype.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change and freshwater ecosystems: impacts across multiple levels of organization.

            Fresh waters are particularly vulnerable to climate change because (i) many species within these fragmented habitats have limited abilities to disperse as the environment changes; (ii) water temperature and availability are climate-dependent; and (iii) many systems are already exposed to numerous anthropogenic stressors. Most climate change studies to date have focused on individuals or species populations, rather than the higher levels of organization (i.e. communities, food webs, ecosystems). We propose that an understanding of the connections between these different levels, which are all ultimately based on individuals, can help to develop a more coherent theoretical framework based on metabolic scaling, foraging theory and ecological stoichiometry, to predict the ecological consequences of climate change. For instance, individual basal metabolic rate scales with body size (which also constrains food web structure and dynamics) and temperature (which determines many ecosystem processes and key aspects of foraging behaviour). In addition, increasing atmospheric CO(2) is predicted to alter molar CNP ratios of detrital inputs, which could lead to profound shifts in the stoichiometry of elemental fluxes between consumers and resources at the base of the food web. The different components of climate change (e.g. temperature, hydrology and atmospheric composition) not only affect multiple levels of biological organization, but they may also interact with the many other stressors to which fresh waters are exposed, and future research needs to address these potentially important synergies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial ecology of dental plaque and its significance in health and disease.

              P.D. Marsh (1994)
              Dental plaque forms naturally on teeth and is of benefit to the host by helping to prevent colonization by exogenous species. The bacterial composition of plaque remains relatively stable despite regular exposure to minor environmental perturbations. This stability (microbial homeostasis) is due in part to a dynamic balance of both synergistic and antagonistic microbial interactions. However, homeostasis can break down, leading to shifts in the balance of the microflora, thereby predisposing sites to disease. For example, the frequent exposure of plaque to low pH leads to inhibition of acid-sensitive species and the selection of organisms with an aciduric physiology, such as mutans streptococci and lactobacilli. Similarly, plaque accumulation around the gingival margin leads to an inflammatory host response and an increased flow of gingival crevicular fluid. The subgingival microflora shifts from being mainly Gram-positive to being comprised of increased levels of obligately anaerobic, asaccharolytic Gram-negative organisms. It is proposed that disease can be prevented or treated not only by targeting the putative pathogens but also by interfering with the processes that drive the breakdown in homeostasis. Thus, the rate of acid production following sugar intake could be reduced by fluoride, alternative sweeteners, and low concentrations of antimicrobial agents, while oxygenating or redox agents could raise the Eh of periodontal pockets and prevent the growth and metabolism of obligately anaerobic species. These views have been incorporated into a modified hypothesis (the "ecological plaque hypothesis") to explain the relationship between the plaque microflora and the host in health and disease, and to identify new strategies for disease prevention.
                Bookmark

                Author and article information

                Contributors
                ohabim@hku.hk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 October 2020
                6 October 2020
                2020
                : 10
                : 16585
                Affiliations
                [1 ]GRID grid.194645.b, ISNI 0000000121742757, School of Biological Sciences, , The University of Hong Kong, ; Pokfulam, Hong Kong Special Administrative Region China
                [2 ]GRID grid.263488.3, ISNI 0000 0001 0472 9649, Institute for Advanced Study, , Shenzhen University, ; Shenzhen, China
                [3 ]GRID grid.194645.b, ISNI 0000000121742757, The University Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), ; Shenzhen, Guangdong Province China
                Article
                73731
                10.1038/s41598-020-73731-8
                7538881
                5e072bb6-2504-4ba5-b8d2-eac6c1ce8be5
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 February 2020
                : 22 September 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002920, Research Grants Council, University Grants Committee;
                Award ID: 27200917
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                applied microbiology,biofilms,microbial communities,environmental microbiology
                Uncategorized
                applied microbiology, biofilms, microbial communities, environmental microbiology

                Comments

                Comment on this article