49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How visas shape and make visible the geopolitical architecture of the planet

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study is to provide a picture for geopolitical globalization: the role of all world countries together with their contribution towards globalization is highlighted. In the context of the present study, every country owes its efficiency and therefore its contribution towards structuring the world by the position it holds in a complex global network. The location in which a country is positioned on the network is shown to provide a measure of its "contribution" and "importance". As a matter of fact, the visa status conditions between countries reflect their contribution towards geopolitical globalization. Based on the visa status of all countries, community detection reveals the existence of 4+1 main communities. The community constituted by the developed countries has the highest clustering coefficient equal to 0.9. In contrast, the community constituted by the old eastern European blocks, the middle eastern countries, and the old Soviet Union has the lowest clustering coefficient approximately equal to 0.65. PR China is the exceptional case. Thus, the picture of the globe issued in this study contributes towards understanding "how the world works".

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The structure and function of complex networks

          M. Newman (2003)
          Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Modularity and community structure in networks

            M. Newman (2006)
            Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Evolution of networks

              , (2001)
              We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence recently. This opens a wide field for the study of their topology, evolution, and complex processes occurring in them. Such networks possess a rich set of scaling properties. A number of them are scale-free and show striking resilience against random breakdowns. In spite of large sizes of these networks, the distances between most their vertices are short -- a feature known as the ``small-world'' effect. We discuss how growing networks self-organize into scale-free structures and the role of the mechanism of preferential linking. We consider the topological and structural properties of evolving networks, and percolation in these networks. We present a number of models demonstrating the main features of evolving networks and discuss current approaches for their simulation and analytical study. Applications of the general results to particular networks in Nature are discussed. We demonstrate the generic connections of the network growth processes with the general problems of non-equilibrium physics, econophysics, evolutionary biology, etc.
                Bookmark

                Author and article information

                Journal
                1601.06314

                General physics,Mathematical & Computational physics
                General physics, Mathematical & Computational physics

                Comments

                Comment on this article