9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Force field for ZIF-8 flexible frameworks: atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A full set of flexible force field parameters for ZIF-8, applied for its gas adsorption and diffusion, has been presented.

          Abstract

          A full set of flexible force field parameters for ZIF-8 is presented, based on the AMBER, UFF parameters and the partial charges computed by the density-derived electrostatic and chemical charge method (DDEC). The parameters for the 2-methyl imidazole (MeIM) ring are adopted from the AMBER force field, while the van der Waals (VDW) parameters for organic linkers and metal centers were determined by rescaling the UFF parameters as ε = 0.635 ε UFF and σ = 1.0 σ UFF to fit the CH 4 adsorption isotherms obtained by Grand Canonical Monte Carlo (GCMC) simulations with the force field parameters to the experimental ones. The CH 4 adsorption isotherms on four different structures of ZIF-8 at 298 K obtained by GCMC simulations are compared with the experimental data. The results show that the simulated CH 4 adsorption isotherms on the ZIF-8 structure reported from the Cambridge Crystallographic Data Centre (CCDC) are closest to the ones on the ZIF-8 structure from the report of Moggach et al. To test our model, adsorption isotherms of CH 4, H 2, CO 2 and N 2 at different temperatures were computed using GCMC simulations, and the results were found to be in a good agreement with the experimental data. In the case of H 2, the equilibrium configurations obtained by GCMC simulations were statistically analyzed with ad hoc code to get probability density distribution profiles. These profiles were transformed to visual slice images, which indicate that the preferential adsorption sites of H 2 molecules in ZIF-8 are located close to the MeIM rings, where the host–guest VDW or electrostatic interactions are maximal, as revealed by the potential energy surfaces (PES). In addition, these force field parameters were confirmed to well reproduce the ZIF-8 structural properties including lattice constants, bond lengths and angles over a wide range of temperatures. The self-diffusivities at the specific loadings of adsorbed gases (CH 4, H 2 and CO 2) in ZIF-8 were calculated by the mean squared displacement (MSD) method. It was found that our self-diffusivities of H 2 are slightly higher than the ones in the literature, and our self-diffusivity of CO 2 is as about three times as the one in the literature, due to the different partial charges and the effect of different force field parameters on framework shape and flexibility in our simulations.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          A New Two-Constant Equation of State

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogen storage in microporous metal-organic frameworks.

            Metal-organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) with a cubic three-dimensional extended porous structure adsorbed hydrogen up to 4.5 weight percent (17.2 hydrogen molecules per formula unit) at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. Inelastic neutron scattering spectroscopy of the rotational transitions of the adsorbed hydrogen molecules indicates the presence of two well-defined binding sites (termed I and II), which we associate with hydrogen binding to zinc and the BDC linker, respectively. Preliminary studies on topologically similar isoreticular metal-organic framework-6 and -8 (IRMOF-6 and -8) having cyclobutylbenzene and naphthalene linkers, respectively, gave approximately double and quadruple (2.0 weight percent) the uptake found for MOF-5 at room temperature and 10 bar.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              DREIDING: a generic force field for molecular simulations

                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Adv.
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2014
                2014
                : 4
                : 32
                : 16503-16511
                Affiliations
                [1 ]School of Chemical Engineering
                [2 ]Wuhan University of Technology
                [3 ]Wuhan 430070, P. R. China
                [4 ]Department of Chemistry
                [5 ]Kent State University
                [6 ]Kent, USA
                Article
                10.1039/C4RA00664J
                5e0a3b54-5eaa-4739-b634-ee0763244a8e
                © 2014
                History

                Comments

                Comment on this article